Project description:Somatic embryogenesis is an important biotechnological technique for large-scale propagation of elite genotypes. Correlations of stage-specific compounds associated with somatic embryo development can help elucidate the ontogenesis of Carica papaya L. somatic embryos and improve tissue culture protocols. To identify the stage-specific proteins that are present during the differentiation of C. papaya somatic embryos, proteomic analyses of embryos at the globular, heart, torpedo and cotyledonary stages were performed. Comparative proteomic analysis revealed a total of 801 proteins, 392 of which were classified as differentially accumulated proteins in at least one of the developmental stages. The globular stage presented a higher number of unique proteins (16), 7 of which were isoforms of 60S ribosomal proteins, suggesting high translational activity at the beginning of somatic embryogenesis. Proteins related to mitochondrial metabolism accumulated to a high degree at the early developmental stages, after which they decreased with increasing development, contributing to cell homeostasis in early somatic embryos. On the other hand, a progressive increase in the accumulation of vicilin, late embryogenesis abundant proteins and chloroplastic proteins leading to somatic embryo maturation was observed. Additionally, the differential accumulation of acetylornithine deacetylase and S-adenosylmethionine synthase 2 proteins correlated with increased contents of putrescine and spermidine, suggesting that polyamine metabolism is important to somatic embryo development. Taken together, the results showed that somatic embryo development in C. papaya is regulated by the differential accumulation of proteins, with ribosomal and mitochondrial proteins being more abundant during the early somatic embryo stages, while proteins involved in seed maturation are more abundant during the late stages.
2020-11-12 | PXD021107 | Pride
Project description:miRNAs on Brazilian pine somatic embryogenesis
Project description:Somatic embryogenesis closely resembles zygotic embryogenesis and hence, it is considered as a model system to explore dynamic events of embryogenesis, at a molecular level. We sequenced three district developmental time points of somatic embryo development in Arabidopsis thaliana with the aim of exploring transcriptomes at a global scale.
Project description:Objectives: to characterize and to better understand changes at the cellular and molecular levels, in embryogenic lines in Douglas-fir obtained after repetitive somatic embryogenesis, that could explain improvement of their embryogenic potential : to primary lines, secondary ones showed an increase of their embryogenic potential; then tertiary lines showed again an improved embryogenic potential compared to second lines. Interestingly, the proteomic analysis further revealed different sets of significant proteins suggesting that each cycle of repetitive somatic embryogenesis is promoting substantial genome-wide rearrangement of the gene expression pattern.