Project description:Genome wide DNA methylation profiling of normal and ischemic stroke patients blood samples. The Illumina Infinium 850k Human DNA methylation Beadchip was used to obtain DNA methylation profiles across approximately 850,000 CpGs in liquid. Samples included 3 healthy people blood samples, 3 ischemic stroke patients blood samples.
Project description:We performed a genome-wide methylation study in whole-blood DNA from 404 ischemic stroke patient cohort, distributed across 3 ischemic stroke subtypes: Large-artery atherosclerosis (n=132), Small-artery disease (n=141) and Cardio embolic (n=127) . Illumina HumanMethylation450 BeadChip array was used to measure DNA methylation in CpG sites. We performed a genome-wide methylation study in whole-blood DNA from 185 ischemic stroke patient cohort. Illumina HumanMethylation450 BeadChip array was used to measure DNA methylation in CpG sites.
Project description:The purpose of this project was to elucidate gene expression in the peripheral whole blood of acute ischemic stroke patients to identify a panel of genes for the diagnosis of acute ischemic stroke. Peripheral blood samples were collected in Paxgene Blood RNA tubes from stroke patients who were >18 years of age with MRI diagnosed ischemic stroke and controls who were non-stroke neurologically healthy. The results suggest a panel of genes can be used to diagnose ischemic stroke, and provide information about the biological pathways involved in the response to acute ischemic stroke in humans. Total RNA extracted from whole blood in n=39 ischemic stroke patients compared to n=24 healthy control subjects.
Project description:The purpose of this project was to elucidate gene expression in the peripheral whole blood of acute ischemic stroke patients to identify a panel of genes for the diagnosis of acute ischemic stroke. Peripheral blood samples were collected in Paxgene Blood RNA tubes from stroke patients who were >18 years of age with MRI diagnosed ischemic stroke and controls who were non-stroke neurologically healthy. The results suggest a panel of genes can be used to diagnose ischemic stroke, and provide information about the biological pathways involved in the response to acute ischemic stroke in humans.
Project description:Ischemic stroke can be classified depending on its etiology as cardioembolic (CE), large-vessel atheroesclerotic (LAA), lacunar, other or cryptogenic. Our aim was to identify gene expression changes that could differentiate CE and LAA stroke in order to guide the optimal secondary treatment .
Project description:Analysis of microglial gene expression profiles after ischemic stroke. Stroke is a complicated disease caused by the interaction of multiple celltypes. Results provide new insights into the molecular mechanisms underlying microglial activation after ischemic stroke.
Project description:Analysis of astrocytic gene expression profiles after ischemic stroke. Stroke is a complicated disease caused by the interaction of multiple celltypes. Results provide new insights into the molecular mechanisms underlying astrocytic activation after ischemic stroke.
Project description:Many hospitals lack facilities for accurate diagnosis of acute ischemic stroke (AIS). Circular RNA (circRNA) is highly expressed in the brain and is closely associated with stroke. In this study, we examined whether the blood-borne circRNAs can be promising candidates as adjunctive diagnostic biomarkers and their pathophysiological roles after stroke. We profiled the blood circRNA expression in mice subjected to experimental focal cerebral ischemia, and validated the selected circRNAs in AIS patients. We demonstrated that 128, 198 and 789 circRNAs were significantly altered at 5 min, 3 h and 24 h after ischemic stroke, respectively.
Project description:Intermittent fasting is previously reported to exhibit neuroprotection against experimental ischemic stroke. However, the detailed understanding of protection mechanisms are lacking. By observing the overall transcriptomic changes in each timepoint of ischemic stroke would benefit the understanding of underlying active pathways and mechanisms. Here, we conduct experimental MCAO ischemic stroke on mice exposed to different daily intermittent fasting method to compare not only among the ischemic stroke timepoints but also the efficacy of different intermittent fasting interventions. Our current study presented the transcriptomic changes for the first time in specific timepoints of ischemic stroke as well as under the condition of intermittent fasting. A number of neuroprotective mechanisms-related genes were significantly affected by intermittent fasting conditions in differential manners.