Project description:The study evaluates the effect of Lactiplantibacillus plantarum IMC 510® supplementation on anthropometric and biochemical parameters, GM composition and gastrointestinal and general symptoms of overweight/obese subjects.
Project description:Using Drosophila we identified a glia-secreted antimicrobial peptide IM33, which alters gut microbiota to modulate sleep. To understand how the gut commensal Lactiplantibacillus plantarum functions in the brain to regulate sleep, we performed single-cell RNA sequencing.
Project description:The ability of Lactiplantibacillus plantarum LOC1 and LOC3, originally isolated from fresh tea leaves, to modulate the response of murine macrophages to the activation of Toll-like receptor 4 (TLR4) by the stimulation with lipopolysaccharide (LPS) was evaluated.
Project description:Identification of proteins contained in extracellular vesicles of Lactiplantibacillus plantarum PCM 2675. Dataset is related to publication http://dx.doi.org/10.20517/evcna.2024.49. This work was financially supported by the National Science Centre, Poland (no. 2021/43/D/NZ6/01464).
Project description:Nutritional intake influences animal growth, reproductive capacity, and survival of animals. Under nutrition deficiency, animal developmental arrest occurs as an adaptive strategy to survive. However, the nutritional basis and the underlying nutrient sensing mechanism essential for animal regrowth after developmental arrest remain to be explored. In Caenorhabditis elegans, larvae undergo early developmental arrest are stress resistant, and they require certain nutrients to recover postembryonic development. Here, we investigated the developmental arrest in C. elegans feeding on Lactiplantibacillus plantarum, and the rescue of the diapause state with trace supplementation of Escherichia coli. We performed a genome-wide screen using 3983 individual gene deletion E. coli mutants and identified E. coli genes that are indispensable for C. elegans larval growth on originally not nutritionally sufficient bacteria L. plantarum. Among these crucial genes, we confirmed E. coli pdxH, and the downstream metabolite pyridoxal 5-P (PLP, Vitamin B6) as important nutritional factors for C. elegans postembryonic development. Transcriptome results suggest that bacterial pdxH affects host development by coordinating host metabolic processes and PLP binding. Additionally, the developmental arrest induced by the L. plantarum diet in worm does not depend on the activation of FoxO/DAF-16. Altogether, these results highlight the role of microbial metabolite PLP as a crucial cofactor to restore postembryonic development in C. elegans.
Project description:This study was conducted to analyze phenotypic and proteomic differences of two Lactiplantibacillus plantarum strains (WCFS1, model strain from human saliva, and CIP104448, stool isolate) when a biofilm was produced under static conditions (well researched), or with the addition of flow (novel).
Project description:The study was conducted on a model of Lactiplantibacillus plantarum, one of the most studied species widely used in the food industry as a probiotic microorganism and/or microbial starter culture. As a result of step-by-step selection from the L. plantarum 8p-a3 strain isolated from the «Lactobacterin» probiotic, the L. plantarum 8p-a3-Clr-Amx strain was obtained, showing increased resistance, compared with the parent strain, to amoxicillin-clavulanic acid (MIC 20 mcg/ml) and clarithromycin (MIC 10 mcg/ml). The L. plantarum strain DMC-S1 was isolated from the intestine of Drosophila melanogaster Canton-S line. Extracellular vesicles of this bacterium can play a significant role in the drug-resistance development and host-microbe interactions.