Project description:Peanut is one of the most important cash crops with high quality oil, high protein content, and many other nutritional elements, and grown globally. Cultivated peanut (Arachis hypogaea L.) is allotetraploid with a narrow genetic base, and its genetics and molecular mechanisms controlling the agronomic traits are poorly understood. The array SNP data was used for revaling of key candidate loci and genes associated with important agronomic traits in peanut
Project description:Peanut allergy reaction severity correlates with increased intestinal epithelial cell (IEC) barrier permeability. CC027/GeniUnc mice develop peanut allergy by intragastric administration of peanut proteins without adjuvant. We report that peanut-allergic CC027/GeniUnc mice showed increased IEC barrier permeability and systemic peanut allergen Ara h 2 after challenge. Jejunal epithelial cell transcriptomics showed effects of peanut allergy on IEC proliferation, survival, and metabolism, and revealed IEC-predominant angiopoietin like-4 (Angptl4) as a unique feature of CC027/GeniUnc peanut allergy. Peanut-allergic pediatric patients demonstrated significantly higher serum ANGPTL4 compared to non-peanut-allergic but atopic patients, highlighting its potential as a biomarker of peanut allergy.