Project description:The goal was to measure the postprandial effect of an oat bran meal on gene expression in leukocytes from healthy subjects and to investigate the postprandial glucose, insulin and triglyceride responses. Linear mixed models were used for the array data to study the simultaneous dependency on many factors and functional categories of genes whose expression were correlated with oat bran intake were determined.
Project description:The goal was to study the dfactionation of different lignocelullose (glucose, wheat bran, wheat straw) by Streptomyces coelicolor A3(2) and the corresponding production of secondary metabolites. This was performed by multi-omic experiment such as transcriptomic/metabolomic and leads to the production of new metabolites. For that, the strain Streptomyces coelicolor A3(2) was subjected to two carbon sources in triplicate (wheat bran and glucose as control). Enzymatic activities were studied at different times and the expression of CAZYmes was studied by transcriptomic in order to detect which enzymes are needed for each carbon source
Project description:In this experiment we performed RNAseq from two different bran regions of wild-type and mice containing the A391T missense mutation in SLC39A8.
Project description:Plant biomass is the most abundant and renewable carbon source for many fungal species. The composition of biomass consists of about 40-45% cellulose, 20-30% hemicellulose, and 15-25% lignin and varies among plant species. In the bio-based industry, Aspergillus species and other fungi are used for the production of lignocellulolytic enzymes to pretreat agricultural waste biomass (e.g. wheat bran). In this study, we aimed to evaluate if it would be possible to create an Aspergillus strain that releases but does not metabolize hexoses from plant biomass. For this purpose, metabolic mutants were generated that were (partially) impaired in glycolysis, by deleting the hexokinase (hxkA) and glucokinase (glkA) genes. To prevent repression of enzyme production due to the accumulation of hexoses, strains were generated in which these mutations were combined with a mutation in creA, encoding the repressor involved in carbon catabolism. Phenotypic analysis revealed that growth of the ΔhxkAΔglkA mutant was reduced on wheat bran. However, hexoses did not accumulate during growth of the mutants on wheat bran, suggesting that glucose metabolism is re-routed towards alternative carbon catabolic pathways. Deletion of creA combined with blocking glycolysis resulted in an increased expression of pentose catabolic and phosphate pathway genes. This indicates that the reduced ability to use hexoses as carbon sources has resulted in a shift towards the pentose fraction of wheat bran as a major carbon source to support growth.
Project description:Analysis and comparison of the metabolomic profile of fermented pollen (colected by Melipona quadrifasciata stingless bee), fermented feed (mixture of fermented pollen with bran to feed Melipona quadrifasciata stingless bee) and bran (used in the mixture with fermented pollen). The abbreviations that name the raw files are:
T7 - Fermented feed.
POLEN - Fermented pollen.
CTRL - Bran.
FALSA - False organic solvent used (HPLC grade MeOH) and equipment system (UHPLC-HRMS).
Project description:Here comparative transcriptomic analyses of Penicillium oxalicum grown on wheat bran (WB), WB plus rice straw (WR) and WB plus Avicel (WA) as the sole carbon source under solid-state fermentation (SSF) revealed that most of differentially expressed genes (DEGs) were involved in metabolism specifically carbohydrate metabolism.