Project description:Comparison between two commercial wine yeast strains (UCD522 and P29) differing in their production of H2S during wine fermentation.
Project description:Gene expression analysis of time course experiment of [1] a synthetic must (nitrogen-rich) fermentation by a natural wine yeast; [2] a synthetic must (nitrogen-poor) fermentation by a natural wine yeast; and [3] a synthetic must (nitrogen-poor) fermentation by a natural wine yeast, supplemented at 72 hours with 200 mg/l of nitrogen. This SuperSeries is composed of the SubSeries listed below.
Project description:In this work, we used a functional gene microarray approach (GeoChip) to assess the soil microbial community functional potential related to the different wine quality. In order to minimize the soil variability, this work was conducted at a “within-vineyard” scale, comparing two similar soils (BRO11 and BRO12) previously identified with respect to pedological and hydrological properties within a single vineyard in Central Tuscany and that yielded highly contrasting wine quality upon cultivation of the same Sangiovese cultivar
Project description:Wine biological aging is a wine making process used to produce specific beverages in several countries in Europe, including Spain, Italy, France, and Hungary. This process involves the formation of a velum at the surface of the wine. Here, we present the first large scale comparison of all European flor strains involved in this process. We inferred the population structure of these European flor strains from their microsatellite genotype diversity and analyzed their ploidy. We show that almost all of these flor strains belong to the same cluster and are diploid, except for a few Spanish strains. Comparison of the array hybridization profile of six flor strains originating from these four countries, with that of three wine strains did not reveal any large segmental amplification. Nonetheless, some genes, including YKL221W/MCH2 and YKL222C, were amplified in the genome of four out of six flor strains. Finally, we correlated ICR1 ncRNA and FLO11 polymorphisms with flor yeast population structure, and associate the presence of wild type ICR1 and a long Flo11p with thin velum formation in a cluster of Jura strains. These results provide new insight into the diversity of flor yeast and show that combinations of different adaptive changes can lead to an increase of hydrophobicity and affect velum formation.
Project description:Oxygen additions play a critical role in winemaking. However, few studies have focused on how this oxygen affects yeast metabolism and physiology in wine making conditions. We performed microarrays to unveil the oxygen response in wine making conditions.
Project description:Comparative gene expression analysis of two wine yeast strains at three time points (days 2, 5 and 14) during fermentation of colombar must. In our study we conducted parallel fermentations with the VIN13 and BM45 wine yeast strains in two different media, namely MS300 (syntheticmust) and Colombar must. The intersection of transcriptome datasets from both MS300 (simulated wine must;GSE11651) and Colombar fermentations should help to delineate relevant and ‘noisy’ changes in gene expression in response to experimental factors such as fermentation stage and strain identity.
Project description:By an evolutionary approach based on long-term culture on gluconate as the sole carbon source, a Saccharomyces cerevisiae wine strains with enhanced flux through the pentose phosphate (PP) pathway were obtained. One of these evolved strains, ECA5, exhibited several novel properties with great potential for wine making, including a higher than wild-type fermentation rate and altered production of acetate and aroma compounds. To describe the mechanisms underlying this complex phenotype, we performed a comparative analysis of transcriptomic profiles between ECA5 and its ancestral strain, EC1118, under low nitrogen, wine fermentation conditions.