Project description:Macrophage therapy for liver fibrosis is on the cusp of meaningful clinical utility. Due to the heterogeneities of macrophages, it is urgent to develop safer macrophages with a more stable and defined phenotype for the treatment of liver fibrosis. Herein, a new macrophage-based immunotherapy using macrophages stably expressing a pivotal cytokine from Toxoplasma gondii, a parasite that infects ≈ 2 billion people is developed. It is found that Toxoplasma gondii macrophage migration inhibitory factor-transgenic macrophage (Mφtgmif) shows stable fibrinolysis and strong chemotactic capacity. Mφtgmif effectively ameliorates liver fibrosis and deactivates aHSCs by recruiting Ly6Chi macrophages via paracrine CCL2 and polarizing them into the restorative Ly6Clo macrophage through the secretion of CX3CL1. Remarkably, Mφtgmif exhibits even higher chemotactic potential, lower grade of inflammation, and better therapeutic effects than LPS/IFN-γ-treated macrophages, making macrophage-based immune therapy more efficient and safer. Mechanistically, TgMIF promotes CCL2 expression by activating the ERK/HMGB1/NF-κB pathway, and this event is associated with recruiting endogenous macrophages into the fibrosis liver. The findings do not merely identify viable immunotherapy for liver fibrosis but also suggest a therapeutic strategy based on the evolutionarily designed immunomodulator to treat human diseases by modifying the immune microenvironment.
Project description:Two forms of the protozoan parasite Toxoplasma gondii are associated with intermediate hosts such as humans: rapidly growing tachyzoites are responsible for acute illness, whereas slowly dividing encysted bradyzoites can remain latent within the tissues for the life of the host. In order to identify genetic factors associated with parasite differentiation, we have used a strong bradyzoite-specific promoter (identified by promoter trapping) to drive the expression of T. gondii hypoxanthine-xanthine-guanine phosphoribosyltransferase (HXGPRT) in stable transgenic parasites, providing a stage-specific positive/negative selectable marker. Insertional mutagenesis has been carried out on this parental line, followed by bradyzoite induction in vitro and selection in 6-thioxanthine to identify misregulation mutants. Two different mutants fail to induce the HXGPRT gene efficiently during bradyzoite differentiation. These mutants are also defective in other aspects of differentiation: they replicate well under bradyzoite growth conditions, lysing the host cell monolayer as effectively as tachyzoites. Expression of the major bradyzoite antigen BAG1 is reduced, and staining with Dolichos biflorus lectin shows reduced cyst wall formation. Microarray hybridizations show that these mutants behave more like tachyzoites at a global level, even under bradyzoite differentiation conditions. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. User Defined
Project description:Two forms of the protozoan parasite Toxoplasma gondii are associated with intermediate hosts such as humans: rapidly growing tachyzoites are responsible for acute illness, whereas slowly dividing encysted bradyzoites can remain latent within the tissues for the life of the host. In order to identify genetic factors associated with parasite differentiation, we have used a strong bradyzoite-specific promoter (identified by promoter trapping) to drive the expression of T. gondii hypoxanthine-xanthine-guanine phosphoribosyltransferase (HXGPRT) in stable transgenic parasites, providing a stage-specific positive/negative selectable marker. Insertional mutagenesis has been carried out on this parental line, followed by bradyzoite induction in vitro and selection in 6-thioxanthine to identify misregulation mutants. Two different mutants fail to induce the HXGPRT gene efficiently during bradyzoite differentiation. These mutants are also defective in other aspects of differentiation: they replicate well under bradyzoite growth conditions, lysing the host cell monolayer as effectively as tachyzoites. Expression of the major bradyzoite antigen BAG1 is reduced, and staining with Dolichos biflorus lectin shows reduced cyst wall formation. Microarray hybridizations show that these mutants behave more like tachyzoites at a global level, even under bradyzoite differentiation conditions. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Keywords: Logical Set
Project description:The causative role of activated Hedgehog signaling in liver fibrosis was investigated in vivo. Using hydrodynamics-based transfection, a transgenic mouse model has been developed that expresses Sonic Hedgehog (SHH), a ligand for Hedgehog signaling, in the liver. Levels of hepatic fibrosis and fibrosis-related gene expression were assessed in the model.
Project description:To know the role of Rab7 isotypes in enteric protozoan parasite Entamoeba histolytica, one out of nine Rab7 isotypes, Rab7D, was specifically silenced and examined the effect on virulence-related phenotypes. To clarify transcriptomic difference caused by rab7d gene silencing, RNA-seq analysis was conducted.
Project description:To know the role of lysosomal hydrolase receptors in virulecne of enteric protozoan parasite Entamoeba histolytica, eleven cysteine protease binding protein family (CPBF) proteins were specifically silenced and examined the effect on virulence-related phenotypes. Among them, CPBF2 gene silence caused defect in Matrigel invasion. To clarify transcriptomic difference in CPBF2 gene silenceing strain, RNA-seq analysis was conducted.
Project description:BackgroundHepatic fibrosis is a widespread disease worldwide. Millions of people lose their lives due to hepatic fibrosis every year. The main causes of hepatic fibrosis include viral infection, alcoholism, and obesity. Many studies have been conducted on the single factors that cause hepatic fibrosis; however, no studies have examined whether hepatic fibrosis caused by multiple factors has concomitant expression molecules and signaling pathways. In this study, we sought to analyze the common differentially expressed messenger ribonucleic acids (mRNAs) of hepatic fibrosis caused by different factors, including hepatitis B virus (HBV) hepatic fibrosis, alcoholic hepatic fibrosis, and non-alcoholic hepatic fibrosis, and identify potential preventive and therapeutic targets.MethodsThe GSE171294, GSE142530, and GSE126848 datasets from the Gene Expression Omnibus (GEO) public database were used in this study. A |log fold change| >0.5 and a P value <0.05 were defined as differentially expressed mRNAs via R software screening. To further screen the target mRNAs, the differential mRNAs were subjected to a functional enrichment analysis based on the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Finally, the relationships between differentially expressed mRNA-encoded proteins were analyzed by a protein-protein interaction (PPI) analysis.ResultsA total of 54 differentially expressed mRNAs were identified. The KEGG analysis showed that the functions of different mRNAs mainly focused on Gonadotropin Releasing Hormone (GnRH) secretion, bile secretion and insulin secretion. The GO enrichment analysis showed that the differential mRNAs were mainly present in the cytoplasmic membrane region and exerted biological functions, such as activating channels and binding proteins by regulating biological processes (BPs), such as cells, cytoskeleton and heparin. The PPI network analysis revealed 16 nodes with 12 pairs of interactions. The 16 critical nodes included BCL6, CD4, CD24, IL32, CALD1, TRAF3, SOX9, KANSL3, MRGBP, PKD2, PKHD1, SYT1, ANXA4, KCNMA1, KCNN2, and CACNA1H.ConclusionsKCNN2, CD4, CD24, BCL6, KCNMA1, and other molecules obtained by the bioinformatics analysis of the RNA-sequencing data can be used as new research targets for hepatic fibrosis induced by different causes. Our findings could provide novel ideas for the treatment of hepatic fibrosis.