Project description:We performed bulk transcriptomic profiling of induced human pluripotent stem cells (iPSCs)-derived type 2 alveolar epithelial cells (iAT2). iPSCs stably expressed CRISPRi (dCas9-KRAB) under the control of doxycyline. iAT2s were transduced with a lentivirus expressing gRNA targeting the transcriptional start site of ADGRG6. Cells were treated with or without doxycyline to intiate CRISPRi-knockdown. Cells were plated at an air-liquid interface, then subsequently exposed to air or 5% cigarette smoke using a VitroCell smoke robot. Cells were harvested for bulk RNA sequencing 8 hours post cigarette smoke exposure
2023-09-20 | GSE223077 | GEO
Project description:RNA-seq on haemocytes of Mercenaria mercenaria under air exposure
| PRJNA685920 | ENA
Project description:Transcriptome data of Pacific white shrimp Litopenaeus vannamei under air exposure
Project description:Gill transcriptome of fast- and slow-growing mussels reared under continuous food supply was recently analysed in order to ascertain the differential gene expression underlying interindividual differences in growth rate. The present study aims to analyse the gene expression differences between fast- and slow-growing mussels submitted to an air exposure of 8 hours a day during the rearing period. Transcriptome will be also compared with their continuously submerged counterparts in order to analyse the effect of air exposure on the gene expression of fast- and slow-growing individuals.
Project description:The marine teleost intestine plays a vital role in whole body salt and water homeostasis. Marine fish must drink seawater in order to rehydrate, and processing of that seawater throughout the gastrointestinal tract allows for the extraction of water from this highly hyperosmotic source. Although the molecular mechanisms of this process have been the subject of much investigation, numerous questions remain. Here, Gulf toadfish (Opsanus beta) were acclimated to normal seawater (35 ppt) of hypersaline seawater (60 ppt) and changes in the anterior intestine, posterior intestine, and intestinal fluid proteomes were investigated using a shotgun proteomics approach employing isobaric TMT tags.