Project description:Transcriptional profiling of early logarithmic phase culture (O.D=0.2-0.3) of Streptococcus mutans UA159 comparing control of untreated Streptococcus mutans UA159 bacteria with Streptococcus mutans UA159 bacteria spplemented with 20µM synthetic DPD (pre-AI-2) which regulates gene expression via AI-2 quorum sensing system.Three compairisons were performed at pHs of 7,6 and 5.
Project description:Transcriptional Profiling of Streptococcus mutans UA159 Grown in Continuous Culture using TV Media Supplemented With 10 mM vs 100 mM Glucose. The genetic and phenotypic responses of Streptococcus mutans, an organism known to be strongly associated with the development of dental caries, to changes in carbohydrate availability were investigated. S. mutans UA159 or a derivative of UA159 lacking ManL, which is the EIIAB component (EIIABMan) of a mannose/glucose permease of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) and a dominant effector of catabolite repression, were grown in continuous culture to steady-state in conditions of excess (100 mM) or limiting (10 mM) glucose. Microarrays using RNA from S. mutans UA159 revealed that 174 genes were differentially expressed in response to changes in carbohydrate availability (P < 0.001). Glucose-limited cells possessed higher PTS activity, could acidify the environment more rapidly and to a greater extent, and produced more ManL protein than cultures grown with excess glucose. Loss of ManL adversely affected carbohydrate transport and acid tolerance. Comp arison of the HPr protein in S. mutans UA159 and the manL deletion strain indicated that the differences in behaviors of the strains were not due to major differences in HPr pools or HPr phosphorylation status. Therefore, carbohydrate availability alone can dramatically influence the expression of physiologic and biochemical pathways that contribute directly to the virulence of S. mutans, and ManL has a profound influence on this behavior. Two-condition experiment, growth in 10 mM vs 100 mM glucose. Biological replicates: 3 per condition, independently grown and harvested. One replicate per array
Project description:Oral streptococci metabolize carbohydrate to produce organic acids, which not only decrease the environmental pH, but also increase osmolality of dental plaque fluid due to tooth demineralization and consequent calcium and phosphate accumulation. Despite these unfavorable environmental changes, the bacteria continue to thrive. The aim of this study was to obtain a global view on strategies taken by Streptococcus mutans to deal with physiologically relevant elevated osmolality, and perseveres within a cariogenic dental plaque. We investigated phenotypic change of S. mutans biofilm upon hyperosmotic challenge. We found that the hyperosmotic condition was able to initiate S. mutans biofilm dispersal by reducing both microbial content and extracellular polysaccharides matrix. We then used whole-genome microarray with quantitative RT-PCR validation to systemically investigate the underlying molecular machineries of this bacterium in response to the hyperosmotic stimuli. Among those identified 40 deferentially regulated genes, down-regulation of gtfB and comC were believed to be responsible for the observed biofilm dispersal. Further analysis of microarray data showed significant up-regulation of genes and pathways involved in carbohydrate metabolism. Specific genes involved in heat shock response and acid tolerance were also upregulated, indicating potential cross-talk between hyperosmotic and other environmental stress. Hyperosmotic condition induces significant stress response on S. mutans at both phenotypic and transcriptomic levels. In the meantime, it may take full advantage of these environmental stimuli to better fit the fluctuating environments within oral cavity, and thus emerges as numeric-predominant bacterium under cariogenic conditions.