Project description:Analysis of breast cancer survivors' gut microbiota after lifestyle intervention, during the COVID-19 lockdown, by 16S sequencing of fecal samples.
Project description:The gut microbiome is intricately coupled with immune regulation and metabolism, but its role in Coronavirus Disease 2019 (COVID-19) is not fully understood. Severe and fatal COVID-19 is characterized by poor anti-viral immunity and hypercoagulation, particularly in males. Here we define multiple pathways by which the gut microbiome protects mammalian hosts from SARS-CoV-2 intranasal infection, both locally and systemically, via production of short-chain fatty acids (SCFAs). SCFAs reduced viral burdens in the airways and intestines by downregulating the SARS-CoV-2 entry receptor, angiotensin-converting enzyme 2 (ACE2), and enhancing adaptive immunity in male animals. In order to identify other mechanisms by which SCFAs influence the outcome of SARS-CoV-2 infection, we performed RNA-seq on lungs from male GF mice given control or SCFA water for two weeks. We identified a novel role for the gut microbiome in regulating systemic coagulation response by limiting megakaryocyte proliferation and platelet turnover via the Sh2b3-Mpl axis. Taken together, our findings have unraveled novel functions of SCFAs and fiber-fermenting gut bacteria that might be leveraged as pan-coronavirus therapeutics to dampen viral entry and hypercoagulation and promote adaptive anti-viral immunity.
Project description:Infection with SARS-CoV-2 has highly variable clinical manifestations, ranging from asymptomatic infection through to life-threatening disease. Host whole blood transcriptomics can offer unique insights into the biological processes underpinning infection and disease, as well as severity. We performed whole blood RNA-Sequencing of individuals with varying degrees of COVID-19 severity. We used differential expression analysis and pathway enrichment analysis to explore how the blood transcriptome differs between individuals with mild, moderate, and severe COVID-19, performing pairwise comparisons between groups.
Project description:We used total RNA of nasopharyngeal swabs from COVID-19 patients to identify their gene expression profile. Multiple biological process were significantly enriched in either asymptomatic or mildly symptomatic patients. These significantly expressed genes were suggested to contribute to the severity of the disease. We also performed metagenomics analysis to identify differences in the microbiome profile of the two groups of patients.
Project description:To reveal genetic determinants of susceptibility to COVID-19 severity in the population and further explore potential immune-related factors, we performed a genome-wide association study on 284 confirmed COVID-19 patients (cases) and 95 healthy individuals (controls). We compared cases and controls of European (EUR) ancestry and African American (AFR) ancestry separately. To further exploring the linkage between HLA and COVID-19 severity, we applied fine-mapping analysis to dissect the HLA association with mild and severe cases.
Project description:We preformed a systems biological assessment of lower respiratory tract host immune responses and microbiome dynamics in COVD-19 patients, using bulk RNA-sequencing, single-cell RNA sequencing, and techniques, and microbiome analysis. Are focus was on differential gene expression in severe COVID-19 patients who developed ventilator associated pneumonia (VAP) during their course versus severe COVID-19 patients who did not develop VAP. We found early impairment in antibacterial immune signaling in patients two or more weeks prior to the development of VAP, compared to COVID-19 patients who did not develop VAP. There was no signficant difference in viral load, but an association of disruption in lung microbiome by alpha and beta diversity metrics was also found.
Project description:We preformed a systems biological assessment of lower respiratory tract host immune responses and microbiome dynamics in COVD-19 patients, using bulk RNA-sequencing, single-cell RNA sequencing, and techniques, and microbiome analysis. Are focus was on differential gene expression in severe COVID-19 patients who developed ventilator associated pneumonia (VAP) during their course versus severe COVID-19 patients who did not develop VAP. We found early impairment in antibacterial immune signaling in patients two or more weeks prior to the development of VAP, compared to COVID-19 patients who did not develop VAP. There was no signficant difference in viral load, but an association of disruption in lung microbiome by alpha and beta diversity metrics was also found.
Project description:We investigated the association between endogenous vitamin D and the severity of COVID-19 as well as the mechanisms of action of vitamin D supplementation. Vitamin D deficiency and insufficiency were associated with increased severity and unfavourable outcome after 28 days. Vitamin D levels were negatively associated with biomarkers of COVID-19 severity. Vitamin D supplementation after challenge of mice with COVID-19 plasma led to reduced levels of TNFα, IL-6, IFNγ and MPO in the lung, as well as down-regulation of pro-inflammatory pathways as derived from RNA-seq experiments. Thus, vitamin D demonstrates a protective effect against severity and unfavorable outcome in COVID-19, possibly through attenuation of tissue-specific hyperinflammation.