Project description:Previous studies have demonstrated that the iron content in marine heterotrophic bacteria is comparatively higher than that of phytoplankton. Therefore, they have been indicated to play a major role in the biogeochemical cycling of iron. In this study, we aimed to investigate the potential of viral lysis as a source of iron for marine heterotrophic bacteria. Viral lysates were derived from the marine heterotrophic bacterium, Vibrio natriegens PWH3a (A.K.A Vibrio alginolyticus). The bioavailability of Fe in the lysates was determined using a model heterotrophic bacterium, namely, Dokdonia sp. strain Dokd-P16, isolated from Fe-limited waters along Line P transect in the Northeastern Pacific Ocean. The bacteria were grown under Fe-deplete or Fe-replete conditions before being exposed to the viral lysate. Differential gene expression following exposure to the viral lysate was analyzed via RNA sequencing to identify differentially expressed genes under iron-replete and iron-deplete conditions. This study would provide novel insights into the role of viral lysis in heterotrophic bacteria in supplying bioavailable iron to other marine microorganisms under iron-limiting and non-limiting conditions. First, the marine heterotrophic bacterium genome, Dokdonia sp. strain Dokd-P16, was sequenced to provide a genomic context for the expression studies. Subsequently, the relative gene expression in Dokdonia sp. strain Dokd-P16 grown under Fe limiting and non-limiting conditions were analyzed. This transcriptomic approach would be utilized to elucidate genes regulated by Fe availability in Dokdonia sp. strain Dokd-P16, which indicate its Fe-related response viral lysate exposure. Taken together, in this study, the transcriptomic responses of Fe-limited and non-limited marine heterotrophic bacteria were analyzed, which provided novel insights into the biological availability of Fe from the viral lysates.
Project description:About one half of the global, biogenic carbon dioxide fixation into organic matter is driven by microscopic algae in the surface oceans. These microalgal activities generate, among other molecules, polysaccharides that are food for and recycled by bacteria with polysaccharide utilization loci (PULs). These genetic clusters of co-evolved genes, which work together in recognition, depolymerizing and uptake of one type of polysaccharide. However, we rarely know the substrates of PULs present in marine bacteria. Here we investigated the proteomic and physiological response of mannan PULs from marine Flavobacteriia isolated in the North Sea. The genomic clusters of these marine Bacteroidetes are related to PULs of human gut Bacteroides strains, which are known to digest α- and β-mannans from yeasts and plants respectively. Proteomics and defined growth experiments with these types of mannans as sole carbon source confirmed the functional prediction. Our data suggest that biochemical principles established for gut or terrestrial microbes apply to marine bacteria even though the PULs are evolutionary distant. Moreover, our data support discoveries from the 60th reporting mannans in microalgae suggesting that these polysaccharides play an important role in the marine carbon cycle.
Project description:About one half of the global, biogenic carbon dioxide fixation into organic matter is driven by microscopic algae in the surface oceans. These microalgal activities generate, among other molecules, polysaccharides that are food for and recycled by bacteria with polysaccharide utilization loci (PULs). These genetic clusters of co-evolved genes, which work together in recognition, depolymerizing and uptake of one type of polysaccharide. However, we rarely know the substrates of PULs present in marine bacteria. Here we investigated the proteomic and physiological response of mannan PULs from marine Flavobacteriia isolated in the North Sea. The genomic clusters of these marine Bacteroidetes are related to PULs of human gut Bacteroides strains, which are known to digest α- and β-mannans from yeasts and plants respectively. Proteomics and defined growth experiments with these types of mannans as sole carbon source confirmed the functional prediction. Our data suggest that biochemical principles established for gut or terrestrial microbes apply to marine bacteria even though the PULs are evolutionary distant. Moreover, our data support discoveries from the 60th reporting mannans in microalgae suggesting that these polysaccharides play an important role in the marine carbon cycle.