Project description:Investigation of whole genome gene expression level changes in Mycobacterium tuberculosis treated with the DHFR inhibitor WR99210, compared to untreated cells. The antimycobacterial properties of WR99210 are further described in Gerum, A., Ulmer, J., Jacobus, D., Jensen, N., Sherman, D., and C. Sibley. 2002. Novel Saccharomyces cerevisiae screen identifies WR99210 analogues that inhibit Mycobacterium tuberculosis dihydrofolate reductase. Antimicrob Agents Chemother 46(11):3362-3369 [PMID:12384337]
Project description:Investigation of whole genome gene expression level changes in Mycobacterium tuberculosis treated with the DHFR inhibitor WR99210, compared to untreated cells. The antimycobacterial properties of WR99210 are further described in Gerum, A., Ulmer, J., Jacobus, D., Jensen, N., Sherman, D., and C. Sibley. 2002. Novel Saccharomyces cerevisiae screen identifies WR99210 analogues that inhibit Mycobacterium tuberculosis dihydrofolate reductase. Antimicrob Agents Chemother 46(11):3362-3369 [PMID:12384337] A nine chip experiment in which total RNA was collected from H37Rv after treatment with 100 uM WR99210 for 0, 4, and 24 hours. Three separate cultures/biological replicates were interrogated for both treated and untreated cultures. Labeled cDNA was hybridized to NimbleGen spotted oligo tiling arrays covering both strands of the M. tuberculosis genome at ~200 bp intervals between 60-mer probes.
Project description:Phosphoglucose isomerase (PGI) plays a key role in both glycolysis and gluconeogenesis inside the cell, whereas outside the cell it exhibits cytokine properties. PGI is also known to act as an autocrine motility factor, a neuroleukin agent and a differentiation and maturation mediator. Here, the first crystal structure of PGI from Mycobacterium tuberculosis H37Rv (Mtb) is reported. The structure was refined at 2.25 A resolution and revealed the presence of one molecule in the asymmetric unit with two globular domains. As known previously, the active site of Mtb PGI contains conserved residues including Glu356, Glu216 and His387 (where His387 is from the neighbouring molecule). The crystal structure of Mtb PGI was observed to be rather more similar to human PGI than other nonbacterial PGIs, with only a few differences being detected in the loops, arm and hook regions of the human and Mtb PGIs, suggesting that the M. tuberculosis enzyme uses the same enzyme mechanism.
Project description:BACKGROUND: Mycobacterium tuberculosis (M.tb) is the causative agent of tuberculosis, killing ~1.7 million people annually. The remarkable capacity of this pathogen to escape the host immune system for decades and then to cause active tuberculosis disease, makes M.tb a successful pathogen. Currently available anti-mycobacterial therapy has poor compliance due to requirement of prolonged treatment resulting in accelerated emergence of drug resistant strains. Hence, there is an urgent need to identify new chemical entities with novel mechanism of action and potent activity against the drug resistant strains. RESULTS: This study describes novel computational models developed for predicting inhibitors against both replicative and non-replicative phase of drug-tolerant M.tb under carbon starvation stage. These models were trained on highly diverse dataset of 2135 compounds using four classes of binary fingerprint namely PubChem, MACCS, EState, SubStructure. We achieved the best performance Matthews correlation coefficient (MCC) of 0.45 using the model based on MACCS fingerprints for replicative phase inhibitor dataset. In case of non-replicative phase, Hybrid model based on PubChem, MACCS, EState, SubStructure fingerprints performed better with maximum MCC value of 0.28. In this study, we have shown that molecular weight, polar surface area and rotatable bond count of inhibitors (replicating and non-replicating phase) are significantly different from non-inhibitors. The fragment analysis suggests that substructures like hetero_N_nonbasic, heterocyclic, carboxylic_ester, and hetero_N_basic_no_H are predominant in replicating phase inhibitors while hetero_O, ketone, secondary_mixed_amine are preferred in the non-replicative phase inhibitors. It was observed that nitro, alkyne, and enamine are important for the molecules inhibiting bacilli residing in both the phases. In this study, we introduced a new algorithm based on Matthews correlation coefficient called MCCA for feature selection and found that this algorithm is better or comparable to frequency based approach. CONCLUSION: In this study, we have developed computational models to predict phase specific inhibitors against drug resistant strains of M.tb grown under carbon starvation. Based on simple molecular properties, we have derived some rules, which would be useful in robust identification of tuberculosis inhibitors. Based on these observations, we have developed a webserver for predicting inhibitors against drug tolerant M.tb H37Rv available at http://crdd.osdd.net/oscadd/mdri/.
Project description:1. The biosynthesis of nucleic acid purine in Mycobacterium tuberculosis H(37)R(v) has been studied by using (14)C-labelled precursors. 2. The results indicate that C-2 and C-8 of the purine ring are derived most efficiently from serine and glycine and not from formate. 3. [(14)C]Methionine is not incorporated into the ureide carbon atoms of the purine ring.
Project description:Haloalkane dehalogenases convert haloalkanes to their corresponding alcohols by a hydrolytic mechanism. To date, various haloalkane dehalogenases have been isolated from bacteria colonizing environments that are contaminated with halogenated compounds. A search of current databases with the sequences of these known haloalkane dehalogenases revealed the presence of three different genes encoding putative haloalkane dehalogenases in the genome of the human parasite Mycobacterium tuberculosis H37Rv. The ability of M. tuberculosis and several other mycobacterial strains to dehalogenate haloaliphatic compounds was therefore studied. Intact cells of M. tuberculosis H37Rv were found to dehalogenate 1-chlorobutane, 1-chlorodecane, 1-bromobutane, and 1,2-dibromoethane. Nine isolates of mycobacteria from clinical material and four strains from a collection of microorganisms were found to be capable of dehalogenating 1,2-dibromoethane. Crude extracts prepared from two of these strains, Mycobacterium avium MU1 and Mycobacterium smegmatis CCM 4622, showed broad substrate specificity toward a number of halogenated substrates. Dehalogenase activity in the absence of oxygen and the identification of primary alcohols as the products of the reaction suggest a hydrolytic dehalogenation mechanism. The presence of dehalogenases in bacterial isolates from clinical material, including the species colonizing both animal tissues and free environment, indicates a possible role of parasitic microorganisms in the distribution of degradation genes in the environment.