Project description:Accumulating evidence suggests that synovitis is associated with osteoarthritic process. Macrophages are predominant cell type in synovium and play principal role in development of synovitis. Our earlier study suggests that the interaction between cartilage fragments and macrophages exacerbates osteoarthritic process. However, molecular mechanisms by which cartilage fragments trigger cellular responses remain to be investigated. Therefore, the current study aims at analyzing molecular response of macrophages to cartilage fragments by RNA-seq
Project description:To investigate the physiologic responses of whole osteoarthritic synovium to cycle tensile strain. We obtained 3 matched synovial tissue samples from 6 patients undergoing total knee arthroplasty, subjected them to cyclic tensile strain, and then performed gene expression profiling analysis using RNA seq from each cyclic tensile strain protocol.
2022-09-30 | GSE205196 | GEO
Project description:Circular RNAs deep sequence profiles of mouse testis
Project description:To date, all of the prior osteoarthritic microarray studies in human tissue have focused on the overlying articular cartilage, meniscus, or synovium but not the underlying subchondral bone. In our previous study, our group developed a methodology for high quality RNA isolation from site-matched cartilage and bone from human knee joints, which allowed us to perform candidate gene expression analysis on the subchohndral bone (published on Osteoarthritis and Cartilage on Dec/5/2012 (doi: 10.1016/j.joca.2012.11.016). To the best of our knowledge, the current study is the first to successfully perform whole-genome microarray profiling analyses of human osteoarthritic subchondral bone. We believe our comprehensive microarray results can improve the understanding of the pathogenesis of osteoarthritis and could further contribute to the development of new biomarker and therapeutic strategies in osteoarthritis.
Project description:Background: Traumatic brain injury is a medical event of global concern, and a growing body of research suggests that circular RNA can play very important roles in traumatic brain injury. To explore the functions of more novel and valuable circular RNA in traumatic brain injury response, a moderate traumatic brain injury in rat was established and a comprehensive analysis of circular RNA expression profiles in rat cerebral cortex was done. Results: As a result, 301 up-regulated and 284 down-regulated circular RNAs were obtained in moderate traumatic brain injury rats, the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were performed based on the circular RNA’s host genes, and a circRNA-miRNA interaction network based on differentially expressed circular RNAs was constructed. Also, four circular RNAs were validated by RT-qPCR and sanger sequencing. Conclusion: This study showed that differentially expressed circular RNAs existed between rat cerebral cortex after moderate traumatic brain injury and control. And this will provide valuable information for circular RNA research in the field of traumatic brain injury.