Project description:The whole proteome analysis of the Pseudomonas sp. FIP_A4 strain in presence and absence of fipronil was conducted to evaluate the differentially expressed enzymes that can play role in fipronil degradation.
Project description:Here we presented the detailed transcriptomic analysis for Pseudomonas sp. AP3_22, an effective sodium dodecyl sulfate degrader isolated from the soil sample from wastewater treatment plant, cultured in the presence of SDS to get the first insight in the global bacterial response toward Sthis anionic detergent. Our results suggest showed that although SDS could be used as a carbon source, in the first place it acts influence on integrity of the cell envelopes and causes global stress response together combined with cell wall modification and repair induction. These results suggest that the modulation of the membrane content composition is first adaptation step in a typical response to detergent exposure. As the second response to the sodium dodecyl sulfate the AP3_22 strain metabolism was shifted from the lipid biosynthesis to the lipid catabolism and the SDS degradation started.
Project description:Relentless mining operations have destroyed our environment significantly. Soil inhabiting microbes play a significant role in ecological restoration of these areas. Microbial weathering processes like chemical dissolution of rocks significantly promotes the soil properties and enhances the rock to soil ratio respectively. Earlier studies have reported that bacteria exhibit efficient rock-dissolution abilities by releasing organic acids and other chemical elements from the silicate rocks. However, rock-dissolving mechanisms of the bacterium remain to be unclear till date. Thus, we have performed rock-dissolution experiments followed by genome and transcriptome sequencing of novel Pseudomonas sp.NLX-4 strain to explore the efficiency of microbe-mediated habitat restoration and its molecular mechanisms underlying this biological process. Results obtained from initial rock dissolution experiments revealed that Pseudomonas sp. NLX-4 strain efficiently accelerates the dissolution of silicate rocks by secreting amino acids, exopolysaccharides, and organic acids with elevated concentrations of potassium, silicon and aluminium elements. The rock dissolution experiments of NLX-4 strain exhibited an initial increase in particle diameter variation values between 0-15 days and decline after 15 days-time respectively. The 6,771,445-base pair NLX-4 genome exhibited 63.21 GC percentage respectively with a total of 6041 protein coding genes. Genome wide annotations of NLX-4 strain exhibits 5045-COG, 3996-GO, 5342-InterPro, 4386-KEGG proteins respectively Transcriptome analysis of NLX-4 cultured with/without silicate rocks resulted in 539 (288-up and 251-down) differentially expressed genes (DEGs). Fifteen DEGs encoding for siderophore transport, EPS and amino acids synthesis, organic acids metabolism, and bacterial resistance to adverse environmental conditions were highly up-regulated by cultured with silicate rocks. This study has not only provided a new strategy for the ecological restoration of rock mining areas, but also enriched the applicable bacterial and genetic resources.
Project description:In order to get insights into the ability of ectomycorrhizal fungi to perceive their biotic environment as well as into the mechanisms of the interactions between ectomycorrhizal fungi and soil bacteria, we analysed the transcriptomic response of the ectomycorrhizal fungus L. bicolor and the strain Pseudomonas fluorescens Pf29Arp during their interactions in vitro.
Project description:The survival, pollutant degradation activity and transcriptome response was monitored in Sphingomonas sp. LH128 inoculated into soil. Cultivable cell numbers were determined by plating, while phenanthrene degradation was monitored by HPLC. The genetic base for the adaptive strategy of LH128 in soil was investigated by using microarray consisting 7,200 gene-coding ORFs. During 4 hours of incubation, 510 genes were differentially expressed (317 increased and 193 reduced expression) while 610 genes were differentially expressed (318 increased and 292 reduced) after 10 days of incubation. Genes with increased expression comprised of gene encoding PAH catabolic enzymes, stress resistance, oxidative stress tolerance, outer membrane proteins/porins and efflux pump proteins while the downregulated genes comprised of genes encoding flagellar biosynthesis, ribosomal proteins and ATPase. Transcriptomic response of phenanthrene degrading Sphingomonas sp. LH128 inoculated into phenanthrene contaminated soil after 4h and after 10 days of incubation was studied using genome-wide gene expression analysis. For this purpose, the strain was pregrown in minimal medium and inoculated at appropriated celld densitites. RNA was extracted both from soil and and from initial inoculum and cDNA was synthesized and labeled with Cy3. Transcriptomic response in soil of three replicates per conditions after both incubation duration were analyzed and compared with the initial inoculum
Project description:RNA-seq analysis of Pseudomonas sp OST1909 exposed to various preparations of naphthenic acids samples led to the identiifcation of many NA-induced genes.