Project description:To know whether the microarray technique could be used to detect bacterial gene expression in soil, large quantity of RNA was extracted from soil cultures of Pseudomonas putida KT2440 containing a chloroaromatic degrading plasmid at the presence or absence of the growth substrate, 3-chlorobenzoate (3CB). The quality and quantity of the extracted RNA were proper for a typical microarray analysis. Gene expression patterns of soil cultures were analyzed by DNA microarray using the extracted RNA. Among 5346 genes on the array, 5% and 4.5% of genes showed up- or down-regulation. Analysis done at the DAVID Bioinformatics Resources server suggested that the benzoate degradation via hydroxylation pathway had the most significant changes after treatment with 3CB. Expression of the 3CB degradation genes located in the genome was confirmed by real-time RT-PCR. In addition, real time RT-PCR analysis revealed that the fluorescent signals from plasmid genes on the microarray were saturated so that the induction ratio of the genes located in the plasmid was underestimated in microarray analysis. To our best knowledge, this report represents the first trial to use microarray technique to detect genome-wide bacterial gene expression in soil. A study using total RNA extracted from soil cultures of Pseudomonas putida KT2440/pSL1. Each chip measures the expression level of 5,341 genes from Pseudomonas putida KT2440 genome and 5 genes from an introduced plasmid pSL1 with fourteen 60-mer probes per gene which have five-fold technical redundancy.
Project description:description Blastocystis sp. is a highly prevalent anaerobic eukaryotic parasite of humans and animals. The genome of several representatives has been sequenced revealing specific traits such as an intriguing 3’-end processing of primary transcripts. We have acquired a first high-throughput proteomics dataset on the difficult to cultivate ST4 isolate WR1 and detected 2,761 proteins. We evidenced for the first time by proteogenomics a functional termination codon derived from transcript polyadenylation for seven different key cellular components.
Project description:Metagenomic sequencing provides a window into microbial community structure and metabolic potential; however, linking these data to exogenous metabolites that microorganisms process and produce (the exometabolome) remains challenging. Previously, we observed strong exometabolite niche partitioning among bacterial isolates from biological soil crust (biocrust). Here we examine native biocrust to determine if these patterns are reproduced in the environment. Overall, most soil metabolites display the expected relationship (positive or negative correlation) with four dominant bacteria following a wetting event and across biocrust developmental stages. For metabolites that were previously found to be consumed by an isolate, 70% are negatively correlated with the abundance of the isolate’s closest matching environmental relative in situ, whereas for released metabolites, 67% were positively correlated. Our results demonstrate that metabolite profiling, shotgun sequencing and exometabolomics may be successfully integrated to functionally link microbial community structure with environmental chemistry in biocrust.
Project description:The survival, pollutant degradation activity and transcriptome response was monitored in Sphingomonas sp. LH128 inoculated into soil. Cultivable cell numbers were determined by plating, while phenanthrene degradation was monitored by HPLC. The genetic base for the adaptive strategy of LH128 in soil was investigated by using microarray consisting 7,200 gene-coding ORFs. During 4 hours of incubation, 510 genes were differentially expressed (317 increased and 193 reduced expression) while 610 genes were differentially expressed (318 increased and 292 reduced) after 10 days of incubation. Genes with increased expression comprised of gene encoding PAH catabolic enzymes, stress resistance, oxidative stress tolerance, outer membrane proteins/porins and efflux pump proteins while the downregulated genes comprised of genes encoding flagellar biosynthesis, ribosomal proteins and ATPase. Transcriptomic response of phenanthrene degrading Sphingomonas sp. LH128 inoculated into phenanthrene contaminated soil after 4h and after 10 days of incubation was studied using genome-wide gene expression analysis. For this purpose, the strain was pregrown in minimal medium and inoculated at appropriated celld densitites. RNA was extracted both from soil and and from initial inoculum and cDNA was synthesized and labeled with Cy3. Transcriptomic response in soil of three replicates per conditions after both incubation duration were analyzed and compared with the initial inoculum
Project description:Genome-wide scanning of gene expression by microarray techniques was successfully performed on RNA extracted from a sterilized soil inoculated with Pseudomonas putida KT2440/pSL1, which contains a chloroaromatic degrading plasmid, in the presence or absence of 3-chlorobenzoic acid (3CB). The genes showing significant changes in their expression in both triplicate microarray analyses using amplified RNA and single microarray analysis using unamplified RNA were investigated. Pathway analysis revealed that the benzoate degradation pathway underwent the most significant changes following treatment with 3CB. Analysis based on categorization of differentially expressed genes against 3CB revealed new findings about the cellular responses of the bacteria to 3CB, including upregulation of the genes specifically involved in transport of 3CB, and induction of a K+/H+ antiporter complex, an universal stress protein, two cytochrome P450 proteins and an efflux transporter. Downregulated expression of some genes involved in carbon metabolism and the genes belong to a prophage in the presence of 3CB was observed. This study demonstrated the applicability of the method of soil RNA extraction for microarray analysis through a proof-of-concept experiment using a sterilized soil inoculated with Pseudomonas putida KT2440/pSL1. A study using total RNA extracted from soil cultures of Pseudomonas putida KT2440/pSL1. Each chip measures the expression level of 5,341 genes from the Pseudomonas putida KT2440 genome with two sets of six 60-mer probes per gene.