Project description:The B-cell receptor (BCR) plays an important role in pathogenesis and progression of chronic lymphocytic leukemia (CLL). We investigated the BCR triggering-dependent microRNA modulation by stimulating CLL cells with immobilized anti-IgM. miRome of immobilized anti-IgM stimulated CLL cells (n=16) identified a substantial upregulation of miR-132 in both unmutated (UM) and mutated (M) IGHV subgroups. A parallel gene expression profile and an in-silico analysis to identify miR-132 target genes¸ allowed us to focus on SIRT1, that encodes for a histone deacetylase targeting several proteins including TP53. We defined a reduction of SIRT1 protein levels upon immobilized anti-IgM stimulation (P=0.001), and a concomitant increase in TP53 acetylation (P=0.0072). The TP53 target gene CDKN1A was consistently up-regulated in immobilized anti-IgM stimulated CLL cells. Of note, the miR-132 constitutive expression levels in CLL cases (n=134) were of similar magnitude of those obtained in in vitro immobilized anti-IgM stimulated CLL cells. Additionally, high miR-132 expression levels retained a favorable prognostic impact in M (P=0.005), but not in UM CLL patients (P=0.968). The described miR-132/SIRT1/TP53 axis, sequentially characterized by BCR triggering, miR-132 up-regulation, SIRT1 down-regulation and TP53 acetylation, should be considered in the light of emerging drugs targeting the BCR pathway in CLL.
Project description:The B-cell receptor (BCR) plays an important role in pathogenesis and progression of chronic lymphocytic leukemia (CLL). We investigated the BCR triggering-dependent microRNA modulation by stimulating CLL cells with immobilized anti-IgM. miRome of immobilized anti-IgM stimulated CLL cells (n=16) identified a substantial upregulation of miR-132 in both unmutated (UM) and mutated (M) IGHV subgroups. A parallel gene expression profile and an in-silico analysis to identify miR-132 target genes¸ allowed us to focus on SIRT1, that encodes for a histone deacetylase targeting several proteins including TP53. We defined a reduction of SIRT1 protein levels upon immobilized anti-IgM stimulation (P=0.001), and a concomitant increase in TP53 acetylation (P=0.0072). The TP53 target gene CDKN1A was consistently up-regulated in immobilized anti-IgM stimulated CLL cells. Of note, the miR-132 constitutive expression levels in CLL cases (n=134) were of similar magnitude of those obtained in in vitro immobilized anti-IgM stimulated CLL cells. Additionally, high miR-132 expression levels retained a favorable prognostic impact in M (P=0.005), but not in UM CLL patients (P=0.968). The described miR-132/SIRT1/TP53 axis, sequentially characterized by BCR triggering, miR-132 up-regulation, SIRT1 down-regulation and TP53 acetylation, should be considered in the light of emerging drugs targeting the BCR pathway in CLL. investigated the BCR triggering-dependent gene expression modulation by stimulating CLL cells with immobilized anti-IgM.
Project description:The B-cell receptor (BCR) plays an important role in pathogenesis and progression of chronic lymphocytic leukemia (CLL). We investigated the BCR triggering-dependent mRNA modulation by stimulating CLL cells with immobilized anti-IgM. miRome of immobilized anti-IgM stimulated CLL cells (n=16) identified a substantial upregulation of miR-132 in both unmutated (UM) and mutated (M) IGHV subgroups. A parallel gene expression profile and an in-silico analysis to identify miR-132 target genes¸ allowed us to focus on SIRT1, that encodes for a histone deacetylase targeting several proteins including TP53. We defined a reduction of SIRT1 protein levels upon immobilized anti-IgM stimulation (P=0.001), and a concomitant increase in TP53 acetylation (P=0.0072). The TP53 target gene CDKN1A was consistently up-regulated in immobilized anti-IgM stimulated CLL cells. Of note, the miR-132 constitutive expression levels in CLL cases (n=134) were of similar magnitude of those obtained in in vitro immobilized anti-IgM stimulated CLL cells. Additionally, high miR-132 expression levels retained a favorable prognostic impact in M (P=0.005), but not in UM CLL patients (P=0.968). The described miR-132/SIRT1/TP53 axis, sequentially characterized by BCR triggering, miR-132 up-regulation, SIRT1 down-regulation and TP53 acetylation, should be considered in the light of emerging drugs targeting the BCR pathway in CLL. Investigated the BCR triggering-dependent gene expression modulation by stimulating CLL cells with immobilized anti-IgM.
Project description:Distinct genetic abnormalities such as TP53 deletion at 17p13.1, have been identified as having an adverse prognostic relevance in B-cell chronic lymphocytic leukemia (B-CLL). Conventional cytogenetic studies have shown that TP53 deletion in B-CLL is associated predominantly with 17p loss resulting from complex chromosomal rearrangements. We performed genome-wide DNA (SNPs arrays), fluorescence in situ hybridization (FISH) and gene expression profiling (GEP) analyses to investigate the significance of 17p loss in a panel of 71 genetically well-characterized B-CLLs in Binet stage A, 18 of which carried a TP53 monoallelic deletion. Combined SNP arrays and FISH approaches showed 17p loss in all of the TP53-deleted cases, with breakpoints scattered along the 17p11.2 region. Mutations in exons 5 to 9 of TP53 were found in 9/12 deleted samples. GEP of 60 B-CLLs, including 7 patients with 17p loss, identified 40 differentially expressed genes in 17p- versus 17p normal samples, 35 of which were down-regulated in 17p- tumors. The majority (30/35) of these transcripts, including putative tumor suppressor genes, mapped to 17p. Overall, these data indicate that, beside TP53 deletion, the concomitant loss of 17p arm may contribute to the strong negative prognostic impact known to be associated with this lesion in B-CLL. Keywords: genomic analysis of B-CLL with 17p loss patients
Project description:The B-cell receptor (BCR) plays an important role in pathogenesis and progression of chronic lymphocytic leukemia (CLL). We investigated the BCR triggering-dependent mRNA modulation by stimulating CLL cells with immobilized anti-IgM. miRome of immobilized anti-IgM stimulated CLL cells (n=16) identified a substantial upregulation of miR-132 in both unmutated (UM) and mutated (M) IGHV subgroups. A parallel gene expression profile and an in-silico analysis to identify miR-132 target genes¸ allowed us to focus on SIRT1, that encodes for a histone deacetylase targeting several proteins including TP53. We defined a reduction of SIRT1 protein levels upon immobilized anti-IgM stimulation (P=0.001), and a concomitant increase in TP53 acetylation (P=0.0072). The TP53 target gene CDKN1A was consistently up-regulated in immobilized anti-IgM stimulated CLL cells. Of note, the miR-132 constitutive expression levels in CLL cases (n=134) were of similar magnitude of those obtained in in vitro immobilized anti-IgM stimulated CLL cells. Additionally, high miR-132 expression levels retained a favorable prognostic impact in M (P=0.005), but not in UM CLL patients (P=0.968). The described miR-132/SIRT1/TP53 axis, sequentially characterized by BCR triggering, miR-132 up-regulation, SIRT1 down-regulation and TP53 acetylation, should be considered in the light of emerging drugs targeting the BCR pathway in CLL.
Project description:Deletion of the short arm of chromosome 17 (17p-) is one of the most critical genetic variants used in B-CLL risk stratification. The tumor suppressor TP53 maps to this region, and its loss or mutation significantly accelerates B-CLL progression, hampers response to chemotherapy, and shortens survival. While florescent in situ hybridization (FISH) analyses for 17p deletions are routinely performed during clinical diagnoses, mutational analyses of the TP53 gene is not widely available and thus its mutational status is often unknown in patients with CLL. Given the limited clinical data that exists for frontline treatment of patients with CLL harboring TP53 mutations, there is a great need to identify novel treatment strategies for this subset of patients. Herein, we use a CLL mouse model (Eμ-TCL1) in the presence or absence of a common TP53 hot-spot mutation (p53R172H, corresponding to p53R175H in humans) to study its impact on disease progression, survival, response to therapy, and dynamic loss of the remaining wild-type Trp53 allele during the course of B-CLL following BTK inhibitor (ibrutinib). We show that ibrutinib was effective in increasing survival and activated gene and cellular programs outside of the p53 pathway in both settings, and thus, did not place selective pressure on the remaining wild type Trp53 allele. These data demonstrate the potent effect of BTK-inhibition in B-CLL and more importantly, provide evidence that ibrutinib acts as an effective treatment for aggressive forms of B-CLL with TP53 mutation and potentially chemo-resistant refractory disease.
Project description:The identification of gene mutation and structural genomic aberrations that are critically involved in CLL pathogenesis is still evolving. One may postulate that genomic driver lesions with effects on CLL proliferation, apoptosis thresholds, or chemotherapy resistance should increase in frequency over time when measured sequentially in a large CLL cohort. We sequentially sampled a large, well-characterized CLL cohort at a mean of 4 years between samplings. The paired analysis included 156 patients, of whom 114 remained untreated and 42 received intercurrent therapies. Results: we identify a strong effect of intercurrent therapies on the frequency of acquisition of aCNAs in CLL. Importantly, the spectrum of acquired genomic changes was largely similar in patients that did or did not receive intercurrent therapies; therefore, various genomic changes that become part of the dominant clones are often already present in CLL cell populations prior to therapy. Further, we provide evidence that therapy of CLL with preexisting TP53 mutations results in the outgrowth of genomically very complex clones which dominate at relapse. Using complementary technologies directed at the detection of genomic events that are present in substantial proportions of of the clinically relevant CLL disease bulk, we capture aspects of genomic evolution in CLL over time, including increases in the frequency of genomic complexity, specific recurrent aCNAs, and TP53 mutations.
Project description:Distinct genetic abnormalities such as TP53 deletion at 17p13.1, have been identified as having an adverse prognostic relevance in B-cell chronic lymphocytic leukemia (B-CLL). Conventional cytogenetic studies have shown that TP53 deletion in B-CLL is associated predominantly with 17p loss resulting from complex chromosomal rearrangements. We performed genome-wide DNA (SNPs arrays), fluorescence in situ hybridization (FISH) and gene expression profiling (GEP) analyses to investigate the significance of 17p loss in a panel of 71 genetically well-characterized B-CLLs in Binet stage A, 18 of which carried a TP53 monoallelic deletion. Combined SNP arrays and FISH approaches showed 17p loss in all of the TP53-deleted cases, with breakpoints scattered along the 17p11.2 region. Mutations in exons 5 to 9 of TP53 were found in 9/12 deleted samples. GEP of 60 B-CLLs, including 7 patients with 17p loss, identified 40 differentially expressed genes in 17p- versus 17p normal samples, 35 of which were down-regulated in 17p- tumors. The majority (30/35) of these transcripts, including putative tumor suppressor genes, mapped to 17p. Overall, these data indicate that, beside TP53 deletion, the concomitant loss of 17p arm may contribute to the strong negative prognostic impact known to be associated with this lesion in B-CLL. Keywords: transcriptional analysis of B-CLL with 17p loss patients
Project description:Distinct genetic abnormalities such as TP53 deletion at 17p13.1, have been identified as having an adverse prognostic relevance in B-cell chronic lymphocytic leukemia (B-CLL). Conventional cytogenetic studies have shown that TP53 deletion in B-CLL is associated predominantly with 17p loss resulting from complex chromosomal rearrangements. We performed genome-wide DNA (SNPs arrays), fluorescence in situ hybridization (FISH) and gene expression profiling (GEP) analyses to investigate the significance of 17p loss in a panel of 71 genetically well-characterized B-CLLs in Binet stage A, 18 of which carried a TP53 monoallelic deletion. Combined SNP arrays and FISH approaches showed 17p loss in all of the TP53-deleted cases, with breakpoints scattered along the 17p11.2 region. Mutations in exons 5 to 9 of TP53 were found in 9/12 deleted samples. GEP of 60 B-CLLs, including 7 patients with 17p loss, identified 40 differentially expressed genes in 17p- versus 17p normal samples, 35 of which were down-regulated in 17p- tumors. The majority (30/35) of these transcripts, including putative tumor suppressor genes, mapped to 17p. Overall, these data indicate that, beside TP53 deletion, the concomitant loss of 17p arm may contribute to the strong negative prognostic impact known to be associated with this lesion in B-CLL. Keywords: transcriptional analysis of B-CLL with 17p loss patients This series of microarray experiments contains the gene expression profiles of purified B-cell chronic lymphocytic leukemia (B-CLL) cells obtained from 60 newly diagnosed patients (Binet stage A). Peripheral blood mononuclear cells from B-CLL patients were isolated by Ficoll-Hypaque density-gradient centrifugation and the proportion of CD5/CD19/CD23 triple positive B cells in the suspension was determined by direct immunofluorescence performed using a FACS-sort flow cytometer with antibodies to: CD19 FITC/PE, CD23 PE and CD5 Cy-Chrome. If B-CLL cells were less than 90%, T cells, NK cells and monocytes were removed by negative selection using CD3, CD56, CD16, and CD14 monoclonal antibody treatment followed by magnetic beads. 3 micrograms of total RNA was processed and, in accordance with the manufacturer's protocols, 15 micrograms of fragmented biotin-labelled cRNA were hybridized on GeneChip Human Genome U133A Arrays (Affymetrix Inc.). The arrays were scanned using the GeneChip Scanner 3000 7G. The images were acquired using Affymetrix GeneChip® Operating Software (GCOS version 1.4) and the probe level data converted to expression values using the Bioconductor function for the Robust Multi-Array average (RMA) procedure (Irizarry et al, 2003), in which perfect match intensities are background adjusted and quantile-quantile normalised.
Project description:Distinct genetic abnormalities such as TP53 deletion at 17p13.1, have been identified as having an adverse prognostic relevance in B-cell chronic lymphocytic leukemia (B-CLL). Conventional cytogenetic studies have shown that TP53 deletion in B-CLL is associated predominantly with 17p loss resulting from complex chromosomal rearrangements. We performed genome-wide DNA (SNPs arrays), fluorescence in situ hybridization (FISH) and gene expression profiling (GEP) analyses to investigate the significance of 17p loss in a panel of 71 genetically well-characterized B-CLLs in Binet stage A, 18 of which carried a TP53 monoallelic deletion. Combined SNP arrays and FISH approaches showed 17p loss in all of the TP53-deleted cases, with breakpoints scattered along the 17p11.2 region. Mutations in exons 5 to 9 of TP53 were found in 9/12 deleted samples. GEP of 60 B-CLLs, including 7 patients with 17p loss, identified 40 differentially expressed genes in 17p- versus 17p normal samples, 35 of which were down-regulated in 17p- tumors. The majority (30/35) of these transcripts, including putative tumor suppressor genes, mapped to 17p. Overall, these data indicate that, beside TP53 deletion, the concomitant loss of 17p arm may contribute to the strong negative prognostic impact known to be associated with this lesion in B-CLL. This SuperSeries is composed of the following subset Series: GSE9992: Molecular and transcriptional characterization of chromosome 17p loss in chronic lymphocytic leukemia, experiment A GSE11036: Molecular and transcriptional characterization of chromosome 17p loss in chronic lymphocytic leukemia, experiment B Keywords: SuperSeries Refer to individual Series