Project description:Probiotic bacteria, specific representatives of bacterial species that are a common part of the human microbiota, are proposed to deliver health benefits to the consumer by modulation of intestinal function via largely unknown molecular mechanisms. To explore in vivo mucosal responses of healthy adults to probiotics, we obtained transcriptomes in an intervention study following a double-blind placebo-controlled cross-over design. In the mucosa of the proximal small intestine of healthy volunteers, probiotic strains from the species Lactobacillus acidophilus, L. casei and L. rhamnosus each induced differential gene regulatory networks and pathways in the human mucosa. Comprehensive analyses revealed that these transcriptional networks regulate major basal mucosal processes, and uncovered remarkable similarity to response profiles obtained for specific bioactive molecules and drugs. This study elucidates how intestinal mucosa of healthy humans perceive different probiotics and provides avenues for rationally designed tests of clinical applications. Keywords: mucosal response of healthy adult humans to lactic acid bacteria
Project description:Obesity is a chronic, complex and multifactorial disease that has reached pandemia levels and is becoming a serious health problem. Intestinal microbiota is considered a main factor that affects body weight and fat mass, which points toward a critical role in the development of obesity. In this sense, probiotic bacteria might modulate the intestinal microbiota and the mucosal-associated lymphoid tissue. The aim of this study was to investigate the effects of L. paracasei, L. rhamnosus and B. breve feeding on the intestinal mucosa gene expression in a genetic animal model of obesity. We used microarrays to investigate the global gene expression on intestinal mucosa after the treatment with probiotic strains.
Project description:Probiotic bacteria, specific representatives of bacterial species that are a common part of the human microbiota, are proposed to deliver health benefits to the consumer by modulation of intestinal function via largely unknown molecular mechanisms. To explore in vivo mucosal responses of healthy adults to probiotics, we obtained transcriptomes in an intervention study following a double-blind placebo-controlled cross-over design. In the mucosa of the proximal small intestine of healthy volunteers, probiotic strains from the species Lactobacillus acidophilus, L. casei and L. rhamnosus each induced differential gene regulatory networks and pathways in the human mucosa. Comprehensive analyses revealed that these transcriptional networks regulate major basal mucosal processes, and uncovered remarkable similarity to response profiles obtained for specific bioactive molecules and drugs. This study elucidates how intestinal mucosa of healthy humans perceive different probiotics and provides avenues for rationally designed tests of clinical applications. Keywords: mucosal response of healthy adult humans to lactic acid bacteria This study was set up according to a randomised double-blind cross-over placebo-controlled design. It contains transcriptional profiles from biopsies from 7 healthy individuals after oral intake of three different Lactobacillus species or placebo control. In total, this study includes data from 7 individuals x 4 treatments=28 arrays.
Project description:Research of human vocal fold (VF) biology is hampered by several factors. The sensitive microstructure of the VF mucosa is one of them and limits the in vivo research, as biopsies carry the unbearable risk of scarring. A laryngeal organotypic model consisting of VF epithelial cells and VF fibroblasts (VFF) might overcome some of the limitations. Whereas human VFF are available in several forms, availability of VF epithelial cells is scarce. Buccal mucosa might be a good source, as it is easily accessible, and biopsies heal without scarring. For this project we generated organotypic constructs consisting of immortalized human VF fibroblasts and primary human buccal epithelial cells. The constructs (n = 3) were compared to native laryngeal mucosa on a histological and proteomic level. The engineered constructs reassembled into a mucosa-like structure, after a cultivation period of 35 days. Immunohistochemical staining confirmed a multi-layered stratified epithelium, a collagen type IV positive barrier-like structure resembling the basal membrane, and an underlying layer containing VFF. Proteomic analysis revealed a total number of 1961 proteins. Of these, 83.8% were detected in both native VF and constructs, with only 53 proteins having significantly different abundance. 15.3% of detected proteins were identified in native VF mucosa only, most likely due to endothelial, immune and muscle cells within the VF samples, while 0.9% were found only in the constructs. Based on easily available cell sources, we could demonstrate that our organotypic laryngeal mucosa model shares many characteristics with native VF mucosa. It represents a stable and reproducible in vitro model and offers a wide range of possibilities ranging from the exploration of VF biology to the testing of interventions (e.g. drug testing).
Project description:Background: In the last decade, much attention has been drawn to probiotic bacteria in the context of inflammatory bowel disease (IBD), since the potential of certain strains to attenuate inflammation was demonstrated in several animal experiments and clinical studies. Data in humans elucidating the molecular mechanism of probiotic action are still scarce. To this end, we used an organ culture system of human colon mucosa and investigated the gene expression profiles after treatment with different probiotic bacteria in phorbol 12-myristate 13-acetate (PMA)/ionomycin (IO)) stimulated samples using whole genome microarrays. Moreover, we analyzed changes occurring in the intestinal explants cultured for 8 hours when compared to fresh, directly frozen mucosa, in order to infer the suitability of the system to study an inflammatory stimulus and likely antiinflammatory responses. Results: Culturing intestinal colon fragments during 8 hours elicited differential gene expression in 283 genes, 229 upregulated and 54 downregulated. Upregulated genes were predominantly related to apoptosis, whereas downregulated genes encoded mitochondrial proteins. No specific enrichment of genes related to inflammation or immune response could be detected, confirming the suitability of the system to further study the inmunomodulatory/anti-inflammatory properties of Lactobacillus casei BL23 (BL23), L.plantarum 299v (LP299v) and L.plantarum 299v (A-) (LP299v (A-)), a mutant strain with reduced adhesive properties to enterocytes. Intestinal explants were stimulated with PMA/IO for 3 hours and subsequently incubated with probiotic bacteria for 4 h. ANOVA analysis (p ? 0,01) revealed 205 differentially expressed genes between Control, PMA/IO (Inflamed), and the 3 bacterial treatments. Most importantly, a number of PMA/IO induced genes related to immune response and immune system process such as IL-2, IFN-?, IL17A and pro-inflammatory cytokines CXCL9 and CXCL11 were downregulated by BL23, LP299v and LP299v (A-). The behaviour of the three Lactobacillus strains was quite similar, although their presence induced differential expression of a small number of genes in a strain dependent manner. Conclusion: The human colon organ culture was found to be a suitable model for the study of inflammatory/anti-inflammatory stimuli, and therefore it constitutes a valuable tool to determine the inmunomodulatory effect of probiotic bacteria. The global transcriptional profile evoked by strains BL23, LP299v and LP299v (A-) in artificially inflamed tissue indicated a clear homeostasis restoring effect, including a decrease of the signals produced by activated T cells. Macroscopically healthy colonic intestinal tissue was obtained at surgery from 3 patients. Intestinal explants were treated with PMA and ionomycin for 3 h to induce pro-inflammatory conditions. Then, culture medium was changed and replaced with either medium or medium containing either Lactobacillus casei BL23, Lactobacillus plantarum 299v, or a nonadherent mutant of L. plantarum 299v (A-) and incubated for further 4 hours. In parallel, control intestinal explants were cultured without any treatment of PMA/ionomycin or probiotic bacteria and compared to directly frozen tissue in order to evaluate changes in gene expression which are due solely to the culture conditions.
Project description:Background: In the last decade, much attention has been drawn to probiotic bacteria in the context of inflammatory bowel disease (IBD), since the potential of certain strains to attenuate inflammation was demonstrated in several animal experiments and clinical studies. Data in humans elucidating the molecular mechanism of probiotic action are still scarce. To this end, we used an organ culture system of human colon mucosa and investigated the gene expression profiles after treatment with different probiotic bacteria in phorbol 12-myristate 13-acetate (PMA)/ionomycin (IO)) stimulated samples using whole genome microarrays. Moreover, we analyzed changes occurring in the intestinal explants cultured for 8 hours when compared to fresh, directly frozen mucosa, in order to infer the suitability of the system to study an inflammatory stimulus and likely antiinflammatory responses. Results: Culturing intestinal colon fragments during 8 hours elicited differential gene expression in 283 genes, 229 upregulated and 54 downregulated. Upregulated genes were predominantly related to apoptosis, whereas downregulated genes encoded mitochondrial proteins. No specific enrichment of genes related to inflammation or immune response could be detected, confirming the suitability of the system to further study the inmunomodulatory/anti-inflammatory properties of Lactobacillus casei BL23 (BL23), L.plantarum 299v (LP299v) and L.plantarum 299v (A-) (LP299v (A-)), a mutant strain with reduced adhesive properties to enterocytes. Intestinal explants were stimulated with PMA/IO for 3 hours and subsequently incubated with probiotic bacteria for 4 h. ANOVA analysis (p ≤ 0,01) revealed 205 differentially expressed genes between Control, PMA/IO (Inflamed), and the 3 bacterial treatments. Most importantly, a number of PMA/IO induced genes related to immune response and immune system process such as IL-2, IFN-γ, IL17A and pro-inflammatory cytokines CXCL9 and CXCL11 were downregulated by BL23, LP299v and LP299v (A-). The behaviour of the three Lactobacillus strains was quite similar, although their presence induced differential expression of a small number of genes in a strain dependent manner. Conclusion: The human colon organ culture was found to be a suitable model for the study of inflammatory/anti-inflammatory stimuli, and therefore it constitutes a valuable tool to determine the inmunomodulatory effect of probiotic bacteria. The global transcriptional profile evoked by strains BL23, LP299v and LP299v (A-) in artificially inflamed tissue indicated a clear homeostasis restoring effect, including a decrease of the signals produced by activated T cells.