Project description:Global transcriptomics analysis of the Desulfovibrio vulgaris change from syntrophic growth with Methanosarcina barkeri to sulfidogenic metabolism
Project description:The goal of this work was to elucidate the mechanism by which pyruvate is utilized as a substrate in a mutant strain of Methanosarcina barkeri Fusaro. In this study, using RNAseq we gained insight into how the mutant strain modulate its transcriptional profile in order to use pyruvate as a substrate. In addition, we obtained information on how methanogens respond to pyruvate at the transcriptional level. The mRNA from of Methanosarcina barkeri Fusaro DSMZ804 and Pyr+ strains grown on a variety of substrates (methanol, acetate, methanol-acetate, methanol-pyruvate, methanol-pyruvate-acetate) were harvested sequenced and mapped to M. barkeri genome. Pairwise comparisons between two cell lines of the Pyr+ strain and the DSMZ 804 strain were performed in all substrates tested.
Project description:The goal of this work was to elucidate the mechanism by which pyruvate is utilized as a substrate in a mutant strain of Methanosarcina barkeri Fusaro. In this study, using RNAseq we gained insight into how the mutant strain modulate its transcriptional profile in order to use pyruvate as a substrate. In addition, we obtained information on how methanogens respond to pyruvate at the transcriptional level.
2015-07-01 | GSE70370 | GEO
Project description:Co-culture with Methanosarcina subterranea and Geobacter metallireducens
Project description:Hydrogenases are a critical component of H2-dependent energy-conservation pathways in Methanosarcina barkeri. To allow phenotypic analysis of the hydrogenases, we constructed mutants lacking the frhADGB, freAEGB, vhtGACD, vhxGAC and echABCDEF operons, individually and in all possible combinations. In addition to measuring the effect of each deletion on growth, methane production, and hydrogenase activity, the effect on gene expression was measured by RNA sequencing to detect potential transcriptional regulation by the hydrogenases.
Project description:The potential of the earthworm Eisenia andrei to reduce soil methanogens, and thus methane emissions to the atmosphere, were assayed in a microcosm experiment. Soils were incubated for 2, 4 and 6 months. We measured microarray parameters (methanogenic diversity) at the start of incubation, as well as after 2, 4 and 6 months of incubation in microcosms with or without earthworms. Methanosarcina barkeri was the most abundant genus that was revealed by AnaeroChip in our experiment.