Project description:The study was designed to test the global impact of negative supercoiling on gene expression in model archaeon T. kodakarensis. Exogenous wild type GyrA or GyrAY119F and wild type GyrB from Thermotoga maritima was expressed under the constitutive PhmtB promoter in T. kodakarensis cells.
Project description:In cyanobacteria DNA supercoiling varies over the diurnal light/dark cycle and is integrated with temporal programs of transcription and replication. We manipulated DNA supercoiling in Synechocystis sp. PCC 6803 by CRISPRi-based knockdown of gyrase subunits gyrA, gyrB and overexpression of topoisomerase I (TopoI) topA and analyzed the transcriptional response to gyrase knock-downs (endpoint in triplicate) and topoisomerase I overexpression (endpoint in triplicate, and 19 time points time series before and after induction) in Synechocystis sp. PCC 6803 via RNA-seq of coding RNA. In detail, Illumina Ribo-Zero Plus rRNA Depletion Kit was used to remove the ribosomal RNA molecules from the isolated total RNA. Removal of rRNA was evaluated with the RNA Pico 6000 kit on the Agilent 2100 Bioanalyzer. RNA was free of detectable rRNA. Preparation of cDNA libraries was performed according to the manufacturer’s instructions for the TruSeq stranded mRNA kit (Illumina, San Diego, CA, United States). Subsequently, each cDNA library was sequenced on an Illumina NextSeq 500 system (2 x 75 nt PE high output v2.5).
Project description:Repeated exposure of Escherichia coli to high ciprofloxacin concentrations selects gyrB mutants that show fluoroquinolone-specific hyperpersistence
Project description:The most basic level of transcription regulation in Streptococcus pneumoniae is the organization of its chromosome in topological domains. In response to drugs that caused DNA-relaxation, a global transcriptional response was observed. Separate domains were identified depending of the transcription of their genes: up-regulated (U), down-regulated (D), non-regulated (N), and flanking (F). We show here that these distinct domains have different expression and conservation tendencies. Microarray fluorescence units under non-relaxation conditions, taken as a measure of gene transcription level, were significantly lower in F genes than in the other domains in the same range of AT content. Transcription level categorization of the domains was D>U>F. In addition, a comparison of 12 S. pneumoniae genome sequences evidenced conservation of gene composition in the U and D domains and extensive gene interchange in F domains. We tested domain organization by measuring the relaxation-mediated transcription of eight insertions of a heterologous Ptccat cassette, two in each type of domain, showing that transcription depended on their chromosomal location. Moreover, transcription from the four promoters directing the five genes involved in supercoiling homeostasis, located either in U (gyrB), D (topA), or N (gyrA and parEC) domains was analyzed both in their chromosomal locations and in a replicating plasmid. Although expression from the chromosomal PgyrB and PtopA showed the expected domain regulation, their expression was down-regulated in the plasmid, which behaved as a D domain. However, both PparE and PgyrA carried their own regulatory signals, their topology-dependent expression being equivalent in the plasmid or in the chromosome. In PgyrA a DNA bend acted as a DNA supercoiling sensor. These results revealed that DNA topology works as a general transcriptional regulator, superimposed to other kind of more specific regulatory mechanisms.