Project description:Plant terrestrialization brought forth the land plants (embryophytes). Embryophytes account for most of the biomass on land and evolved from streptophyte algae in a singular event. Recent advances have unraveled the first full genomes of the closest algal relatives of land plants; among the first such species was Mesotaenium endlicherianum. Here, we used fine-combed RNAseq in tandem with photophysiological assessment on Mesotaenium exposed to a continuous range of temperature and light cues. Our data establish a grid of 42 different conditions, resulting in 128 transcriptomes and ~1.5 Tbp (~9.9 billion reads) of data to study combinatory effects of stress response using clustering along gradients. We describe major hubs in genetic networks underpinning stress response and acclimation in the molecular physiology of Mesotaenium. Our data suggest that lipid droplet formation, plastid and cell wall-derived signals denominate molecular programs since more than 600 million years of streptophyte evolution—before plants made their first steps on land.
Project description:Immune cells can rapidly adapt their functional program in response to cytokines. How cytokine-induced transcriptional responses are affected by micro-environmental cues remains poorly understood. The Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor sensing environmental signals including metabolites. Here we addressed the cross-talk between Interleukin-4 and AhR signaling in monocytes.
Project description:Due to the progressive environmental change that the Antarctic Peninsula has undergone over time, a more comprehensive overview of the metabolic features of Colobanthus quitensis becomes particularly interesting to assess its ability to respond to environmental stresses. To this end, a differential proteomic approach has been used to study the response of C. quitensis to different environmental cues.