Project description:Plant terrestrialization brought forth the land plants (embryophytes). Embryophytes account for most of the biomass on land and evolved from streptophyte algae in a singular event. Recent advances have unraveled the first full genomes of the closest algal relatives of land plants; among the first such species was Mesotaenium endlicherianum. Here, we used fine-combed RNAseq in tandem with photophysiological assessment on Mesotaenium exposed to a continuous range of temperature and light cues. Our data establish a grid of 42 different conditions, resulting in 128 transcriptomes and ~1.5 Tbp (~9.9 billion reads) of data to study combinatory effects of stress response using clustering along gradients. We describe major hubs in genetic networks underpinning stress response and acclimation in the molecular physiology of Mesotaenium. Our data suggest that lipid droplet formation, plastid and cell wall-derived signals denominate molecular programs since more than 600 million years of streptophyte evolution—before plants made their first steps on land.
Project description:Mutations in the cytosine-5 RNA methyltransferase NSun2 can cause Intellectual Disability (ID) and symptoms commonly found in patients with Dubowitz syndrome. By analysing gene expression data with the global cytosine-5 RNA methylome in NSun2-deficient mice, we find that loss of cytosine-5 RNA methylation increases the fragmentation of transfer RNAs (tRNA) leading to an accumulation of 5M-bM-^@M-^Y halves. Cleavage of tRNAs by Angiogenin is a common cellular stress response to silence translational programmes, and we show that Angiogenin binds tRNAs lacking site-specific NSun2-methylation with higher affinity. Furthermore, cells lacking functional NSun2 up-regulate stress markers, and deletion of NSun2 compromises cellular survival in response stress stimuli including UV-light and oxidative stress. The decreased tolerance of NSun2 null cells towards oxidative stress can be rescued through inhibition of Angiogenin. In conclusion, cytosine-5 RNA methylation is an essential post-transcriptional mechanism during cellular stress responses and NSun2-mediated tRNA methylation protects from Angiogenin-dependent stress-induced RNA cleavage. RNA Methylation profiling by high throughput sequencing small non-coding RNA profiling by high throughput sequencing Pol III Chromatin-IP profiling by high throughput sequencing
Project description:The aim of this study is to characterize the systemic stress response (SSR) induced in patients undergoing colorectal cancer (CRC) surgery. The project is a clinical prospective study. Blood samples will be collected from 30 patients on the day before CRC-surgery, and 1, 2, 3 and 10 days after surgery. A specimen from the resected tumor tissue will also be collected and sent for immunohistochemical analysis. Whole blood gene expression profiling will be performed to gain knowledge of the genetic changes in immunological, inflammatory and oxidative stress-related factors initiated by surgery. Peripheral immunological cells, proteins and cytokines will be analysed by FLOW and ELISA methods, and the functional capacity of NK-cells will also be defined for each time point. Furthermore, tumor tissue will be analyzed for invasion of immunological cells. At each time point, the patients will be asked to fill out a validated patient reported outcome measure with questions concerning clinical outcome parameters related to recovery after CRC-surgery
Project description:This dataset includes 60 BAM files from HF2354, HF3016 glioblastoma cell lines subjected to continuous stress (hypoxia, 3-day and 9-day), stress followed by recovery (irradiation, 4-day stress exposure and 5-day recovery), and no stress/normoxia controls and profiled using reduced-representation bisulfite sequencing.