Project description:Acoustic individuality may well play a big role during the mating season of many birds. Black grouse (Lyrurus tetrix) produces two different long-distance calls during mating on leks: rookooing and hissing calls. The first one represents low frequency series of bubbling sounds and the second one represents hissing sound. This hissing represents a signal not produced by the syrinx. We analyzed 426 hissing calls from 24 individuals in Finland and Scotland. We conducted cross-validated discrimination analyses (DFA). The discrimination model classified each call with almost 78% accuracy (conventional result) and the validated DFA revealed 71% output, that is much higher than classification by chance (4%). The most important variables were Frequency 95%, 1st Quartile Frequency, Aggregate Entropy and Duration 90%. We also tested whether between individual variation is higher than within individual variation using PIC (Potential for individual coding) and we found that all acoustic parameters had PIC > 1. We confirmed that hissing call of black grouse is individually distinct. In comparison to the signals produced by the syrinx, non-vocal sounds have been studied rarely and according to our knowledge, this is the second evidence of vocal individuality in avian hissing sounds which are not produced by syrinx. Individuality in the vocalization of the male black grouse may aid females in mating partner selection, and for males it may enable competitor recognition and assessment. Individually distinct hissing calls could be of possible use to monitor individuals on leks. Such a method could overcome problems during traditional monitoring methods of this species, when one individual can be counted multiple times, because catching and traditional marking is problematic in this species.
Project description:Since 2017, a reinforcement programme was developed to save the last, endangered, Belgian population of black grouse (Lyrurus tetrix), in the High Fens Natural Park. To improve the success of this programme, an analysis of past data of this population was undertaken to understand the causes of its past decline. A time series analysis was applied, using annual spring male census data recorded between 1967 and 2016. In the period 1967-1993, there was a fluctuation around an equilibrium of a population of ca. 40-45 males. The peak of 85 males observed in 1971 was probably due to a succession of several favourable years in terms of environmental conditions, albeit without an exceptional annual growth rate. It seems that fox density, by using the occurrence of rabies as a proxy, has an impact on the black grouse population. After 1993, the population dynamic changed drastically, decreasing continuously until finally reaching quasi-extinction. On average, the population lost 15.4% of its size each year. Climate models, applied in previous studies to explain these population trends in the High Fens, failed to describe this major modification in this population's dynamic and its recent decline. We suggest that this negative effect was mainly induced by a significant increase in predation by red fox (Vulpes vulpes), whose abundance has increased considerably since the 1990s, in particular, as a consequence of the eradication of fox rabies. We also discuss alternative hypotheses, such as the impact of other predator species, modification of the natural environment and climatic modifications.Supplementary informationThe online version contains supplementary material available at 10.1007/s10344-023-01642-w.
Project description:modENCODE_submission_5986 This submission comes from a modENCODE project of Jason Lieb. For full list of modENCODE projects, see http://www.genome.gov/26524648 Project Goal: The focus of our analysis will be elements that specify nucleosome positioning and occupancy, control domains of gene expression, induce repression of the X chromosome, guide mitotic segregation and genome duplication, govern homolog pairing and recombination during meiosis, and organize chromosome positioning within the nucleus. Our 126 strategically selected targets include RNA polymerase II isoforms, dosage-compensation proteins, centromere components, homolog-pairing facilitators, recombination markers, and nuclear-envelope constituents. We will integrate information generated with existing knowledge on the biology of the targets and perform ChIP-seq analysis on mutant and RNAi extracts lacking selected target proteins. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf EXPERIMENT TYPE: CHIP-seq. BIOLOGICAL SOURCE: Strain: N2; Developmental Stage: L3 Larva; Genotype: wild type; Sex: mixed Male and Hermaphrodite population; EXPERIMENTAL FACTORS: Developmental Stage L3 Larva; temp (temperature) 20 degree celsius; Strain N2; Antibody NURF-1 SDQ3525 (target is NURF-1)
Project description:Trithorax group (TrxG) proteins counteract Polycomb silencing by an as yet uncharacterized mechanism. A well-known member of the TrxG is the histone methyltransferase Absent, Small, or Homeotic discs 1 (ASH1). In Drosophila ASH1 is needed for the maintenance of Hox gene expression throughout development, which is tightly coupled to preservation of cell identity. In order to understand the molecular function of ASH1 in this process, we performed affinity purification of tandem-tagged ASH1 followed by mass spectrometry (AP-MS) and identified FSH, another member of the TrxG as interaction partner. Here we provide genome-wide chromatin maps of both proteins based on ChIP-seq. Our Dataset comprises of 4 ChIP-seq samples using chromatin from S2 cells which was immunoprecipitated, using antibodies against Ash1, FSH-L and FSH-SL.
Project description:Seeds are comprised of three major parts of distinct parental origin: the seed coat, embryo, and endosperm. The maternally-derived seed coat is important for nurturing and protecting the seeds during development. By contrast, the embryo and the endosperm are derived from a double fertilization event, where one sperm fertilizes the egg to form the diploid zygote and the other sperm fertilizes the central cell to form the triploid endosperm. Each seed part undergoes distinct developmental programs during seed development. What methylation changes occur in the different seed parts, if any, remains unknown. To uncover the possible role of DNA methylation in different parts of the seed, we characterized the methylome of three major parts of cotyledon stage seeds, the seed coat, embryonic cotyledons, and embryonic axis, using Illumina sequencing. Illumina sequencing of bisulfite-converted genomic DNA from three parts of soybean cotyledon stage seeds: seed coat (COT-SC), embryonic cotyledons (COT-COT), and embryonic axis (COT-AX).