Project description:Acoustic individuality may well play a big role during the mating season of many birds. Black grouse (Lyrurus tetrix) produces two different long-distance calls during mating on leks: rookooing and hissing calls. The first one represents low frequency series of bubbling sounds and the second one represents hissing sound. This hissing represents a signal not produced by the syrinx. We analyzed 426 hissing calls from 24 individuals in Finland and Scotland. We conducted cross-validated discrimination analyses (DFA). The discrimination model classified each call with almost 78% accuracy (conventional result) and the validated DFA revealed 71% output, that is much higher than classification by chance (4%). The most important variables were Frequency 95%, 1st Quartile Frequency, Aggregate Entropy and Duration 90%. We also tested whether between individual variation is higher than within individual variation using PIC (Potential for individual coding) and we found that all acoustic parameters had PIC > 1. We confirmed that hissing call of black grouse is individually distinct. In comparison to the signals produced by the syrinx, non-vocal sounds have been studied rarely and according to our knowledge, this is the second evidence of vocal individuality in avian hissing sounds which are not produced by syrinx. Individuality in the vocalization of the male black grouse may aid females in mating partner selection, and for males it may enable competitor recognition and assessment. Individually distinct hissing calls could be of possible use to monitor individuals on leks. Such a method could overcome problems during traditional monitoring methods of this species, when one individual can be counted multiple times, because catching and traditional marking is problematic in this species.
Project description:Intensive hunting activities such as commercial fishing and trophy hunting can have profound influences on natural populations. However, less intensive recreational hunting can also have subtle effects on animal behaviour, habitat use and movement, with implications for population persistence. Lekking species such as the black grouse (Lyrurus tetrix) may be especially prone to hunting as leks are temporally and spatially predictable, making them easy targets. Furthermore, inbreeding in black grouse is mainly avoided through female-biased dispersal, so any disruptions to dispersal caused by hunting could lead to changes in gene flow, increasing the risk of inbreeding. We therefore investigated the impact of hunting on genetic diversity, inbreeding and dispersal on a metapopulation of black grouse in Central Finland. We genotyped 1065 adult males and 813 adult females from twelve lekking sites (six hunted, six unhunted) and 200 unrelated chicks from seven sites (two hunted, five unhunted) at up to thirteen microsatellite loci. Our initial confirmatory analysis of sex-specific fine-scale population structure revealed little genetic structure in the metapopulation. Levels of inbreeding did not differ significantly between hunted and unhunted sites in neither adults nor chicks. However, immigration rates into hunted sites were significantly higher among adults compared to immigration into unhunted sites. We conclude that the influx of migrants into hunted sites may compensate for the loss of harvested individuals, thereby increasing gene flow and mitigating inbreeding. Given the absence of any obvious barriers to gene flow in Central Finland, a spatially heterogeneous matrix of hunted and unhunted regions may be crucial to ensure sustainable harvests into the future.