Project description:To determine the mesenchymal function of EZH2 in the mouse uterus, we generated Ezh2 cKO mice using anti-Mullerian hormone type 2 (Amhr2)-Cre that is expressed in the mesenchymal and not epithelial compartment of the uterus
Project description:Histone proteins undergo various modifications that alter chromatin structure, including addition of methyl groups. Enhancer of homolog 2 (EZH2), is a histone methyltransferase that methylates lysine residue 27, and thereby, suppresses gene expression. EZH2 plays integral role in the uterus and other reproductive organs. We have previously shown that conditional deletion of uterine EZH2 results in increased proliferation of luminal and glandular epithelial cells, and RNAseq analyses reveal several uterine transcriptomic changes in Ezh2 conditional (c) knockout (KO) mice that can affect estrogen signaling pathways. To pinpoint the origin of such gene expression changes, we used the recently developed spatial transcriptomics (ST) method with the hypotheses that Ezh2cKO mice would predominantly demonstrate changes in epithelial cells and/or ablation of this gene would disrupt normal epithelial/stromal gene expression patterns. Uteri were collected from ovariectomized adult WT and Ezh2cKO mice and analyzed by ST. Asb4, Cxcl14, Dio2, and Igfbp5 were increased, Sult1d1, Mt3, and Lcn2 were reduced in Ezh2cKO uterine epithelium vs. WT epithelium. For Ezh2cKO uterine stroma, differentially expressed key hub genes included Cald1, Fbln1, Myh11, Acta2, and Tagln. Conditional loss of uterine Ezh2 also appears to shift the balance of gene expression profiles in epithelial vs. stromal tissue toward uterine epithelial cell and gland development and proliferation, consistent with uterine gland hyperplasia in these mice. Current findings provide further insight into how EZH2 may selectively affect uterine epithelial and stromal compartments. Additionally, these transcriptome data might provide the mechanistic understanding and valuable biomarkers for human endometrial disorders with epigenetic underpinnings.
Project description:EZH2 plays an important role in stem cell renewal and maintenance by inducing gene silencing via its histone methyltransferase activity. EZH2 downregulation markedly enhances neuron differentiation of human mesenchymal stem cells (hMSCs)chromatin at promoters of EZH2 target genes. comparison of knockdown EZH2 of hMSCs vs hMSCs
Project description:Uterine glands are essential for pregnancy in mice and likely humans, because they secrete or transport bioactive substances that regulate uterine receptivity for blastocyst implantation. In mice, the uterus becomes receptive to blastocyst implantation on day 4, but is refractory by day 5. Here, blastocysts could be recovered from progesterone-induced uterine gland (PUGKO) but not wildtype (WT) mice on day 5 post-mating. Anti-adhesive Muc1 protein and microvilli were present on the luminal epithelium of PUGKO but not WT uteri. A number of known uterine receptivity genes and gland-specific genes were altered in the PUGKO uterus. Next, the uterus and uterine luminal fluid (ULF) were obtained from WT and PUGKO mice on day 3, 4 and 5. Transcriptome analysis revealed that 580 genes were decreased in the PUGKO uterus, however ULF secrotome analysis revealed that many proteins and several amino acids were increased in the PUGKO ULF. Of note, many proteins encoded by many gland-specific genes were not identified in the ULF of WT mice. These results support the ideas that uterine glands secrete factors that regulate ULF homeostasis and interact with other cell types in the uterus to influence uterine receptivity and blastocyst implantation for the establishment of pregnancy.
Project description:Testicular development and function relies on interactions between somatic cells and the germline, but similar to other organs, regenerative capacity decline in aging and disease. Whether the adult testis maintains a reserve progenitor population with repair or regenerative capacity remains uncertain. Here, we characterized a recently identified mouse testis interstitial population expressing the transcription factor Tcf21. We found that Tcf21+ cells are bipotential somatic progenitors present in fetal testis and ovary, maintain adult testis homeostasis during aging, and act as reserve somatic progenitors following injury. In vitro, Tcf21+ cells are multipotent mesenchymal progenitors which form multiple somatic lineages including Leydig and myoid cells. Additionally, Tcf21+ cells resemble resident fibroblast populations reported in other organs having roles in tissue homeostasis, fibrosis, and regeneration. Our findings reveal that the testis, like other organs, maintains multipotent mesenchymal progenitors that can be leveraged in development of future therapies for hypoandrogenism and/or infertility.
Project description:EZH2 plays an important role in stem cell renewal and maintenance by inducing gene silencing via its histone methyltransferase activity. EZH2 downregulation markedly enhances neuron differentiation of human mesenchymal stem cells (hMSCs)chromatin at promoters of EZH2 target genes.