Project description:Fatty acids are critical energy sources and structural components of cells. We investigate how CARM1 reprograms fatty acid metabolism to promote ovarian cancer
Project description:SK-UT-1 uterine leiomyosarcomas (Ut-LMS) cells were transduced with a fatty acid synthase (FASN)-containing retroviral vector to recapitulate the “lipogenic phenotype of cancer.” Consistent with this model, forced expression of FASN enhanced SK-UT-1 proliferation, migration, and cellular motion. Further investigation showed FASN promotes trimethylation of H3K9 (H3K9me3) and acetylation of H3K27 (H3K27ac) in SK-UT-1 cells. In contrast, siRNA targeting of FASN in high endogenous FASN expressing SK-LMS-1 Ut-LMS cells inhibits trimethylation of H3K9 and acetylation of H3K27. Palmitate, the predominant fatty acid product of FASN, increased H3K9me3, H3K27ac and H3K27me3 detection in SK-UT-1 cells. FASN promoted histone 3 methylation and acetylation through alteration of histone 3-modifying enzymatic activities (HDAC, HDM, HMT and HAT).ChIP-seq in SK-UT-1-FASN cells with anti-H3K9me3 antibody identified regions of enriched binding compared to vector-only cells. One differentially-enriched gene, CRISP1, was investigated further by ChIP-PCR. The transcriptionally repressive function of H3K9me3 was confirmed in CRISP1. Our results provide mechanistic insight into the pathobiology of the “lipogenic phenotype of cancer.” Here, FASN reprograms the Ut-LMS epigenome through chromatin remodeling to promote the “malignant phenotype.”
Project description:The arginine methyltransferase CARM1 exhibits high expression levels in several human cancers, with the trend also observed in ovarian cancer. However, therapeutic approaches targeting tumors that overexpress CARM1 have not been explored. Cancer cells exploit metabolic reprogramming such as fatty acids for their survival. Here we report that CARM1 promotes monounsaturated fatty acid synthesis and fatty acid reprogramming represents a metabolic vulnerability for CARM1-expressing ovarian cancer. CARM1 promotes the expression of genes encoding rate-limiting enzymes of de novo fatty acid metabolism such as acetyl-CoA carboxylase 1 (ACC1) and fatty acid synthase (FASN). In addition, CARM1 upregulates stearoyl-CoA desaturase 1 (SCD1) that produces monounsaturated fatty acid by desaturation. Thus, CARM1 enhances de novo fatty acids synthesis which was subsequently utilized for synthesis of monounsaturated fatty acids. Consequently, inhibition of SCD1 suppresses the growth of ovarian cancer cells in a CARM1 status-dependent manner, which was rescued by the addition of monounsaturated fatty acids. Consistently, CARM1-expressing cells were more tolerant to the addition of saturated fatty acids. Indeed, SCD1 inhibition demonstrated efficacy against ovarian cancer in both orthotopic xenograft and syngeneic mouse models in a CARM1-dependent manner. In summary, our data show that CARM1 reprograms fatty acid metabolism and targeting SCD1 through pharmacological inhibition can serve as a potent therapeutic approach for CARM1-expressing ovarian cancers.SignificanceCARM1 reprograms fatty acid metabolism transcriptionally to support ovarian cancer growth by producing monounsaturated fatty acids, supporting SCD1 inhibition as a rational strategy for treating CARM1-expressing ovarian cancer.
Project description:CARM1 is an arginine methyltransferase that asymmetrically dimethylates protein substrates on arginine residues. CARM1 is often overexpressed in cancers and stimulates growth. However, clinically applicable therapeutic strategies based on CARM1 expression in cancer remains to be explored. Here we show that epithelial ovarian cancer is among the cancers with the highest CARM1 amplification rates that predicates a shorter survival. Our unbiased screen show that CARM1-expressing ovarian cancer cells are selectively sensitive to the inhibition of EZH2, another epigenetic regulator that silences its target genes. Inhibition of EZH2 activity using a clinically applicable small molecule inhibitor significantly suppressed the growth of CARM1-expressing ovarian tumors in two xenograft models. The observed selectivity correlates with upregulation of EZH2 target genes in a CARM1-dependent manner. CARM1 promotes EZH2 dependent gene silencing by methylating BAF155 to alter the antagonism between EZH2 and BAF155. Together, these results indicate that pharmacological inhibition of EZH2 is a novel therapeutic strategy for CARM1-expressing cancers.
Project description:CARM1 is an arginine methyltransferase that asymmetrically dimethylates protein substrates on arginine residues. CARM1 is often overexpressed in cancers and stimulates growth. However, clinically applicable therapeutic strategies based on CARM1 expression in cancer remains to be explored. Here we show that epithelial ovarian cancer is among the cancers with the highest CARM1 amplification rates that predicates a shorter survival. Our unbiased screen show that CARM1-expressing ovarian cancer cells are selectively sensitive to the inhibition of EZH2, another epigenetic regulator that silences its target genes. Inhibition of EZH2 activity using a clinically applicable small molecule inhibitor significantly suppressed the growth of CARM1-expressing ovarian tumors in two xenograft models. The observed selectivity correlates with upregulation of EZH2 target genes in a CARM1-dependent manner. CARM1 promotes EZH2 dependent gene silencing by methylating BAF155 to alter the antagonism between EZH2 and BAF155. Together, these results indicate that pharmacological inhibition of EZH2 is a novel therapeutic strategy for CARM1-expressing cancers.
Project description:The goal of the project was global identification of CARM1 substrates. Arginine methylation landscapes were profiled and compared in wild type and CARM1 knockout cells to determine in vivo substrates of CARM1.
Project description:The goal of this study is to identify ERalpha-target genes affected by overexpression of the histone arginine methyltransferase CARM1 in breast cancer cells. The roles of CARM1 in ERalpha+ breast cancer was not well characterized. Therefore, we created a Dox inducible CARM1 overexpressing MCF7 cell line where CARM1 is overexpressed by 2 fold to determine the created a Dox-inducible CARM1 overexpressing MCF7 cells for evaluation of the global effects of CARM1 on Eralpha-target gene expression. MCF7-tet-on-CARM1 clone 13 were treated under 4 conditions: DMSO; Dox; E2 (10nM); Dox+E2. In Dox+E2 condition, cells were pre-treated with Dox for 5 days before treating with E2 for 4 hours. 3 biological replicates were included and total of 12 samples were analyzed.
Project description:While protein arginine methyltransferases (PRMTs) and PRMT-catalyzed protein methylation have been well-known to be involved in a myriad of biological processes, their roles in carcinogenesis, particularly in estrogen receptor alpha (ERa)-positive breast cancers, remain incompletely understood. Here we focused on investigating PRMT4 (also called coactivator associated arginine methyltransferase 1, CARM1) due to its high expression and the associated poor prognosis in ERa-positive breast cancers. We first uncovered the chromatin-binding landscape and transcriptional targets of CARM1 in the presence of estrogen in ERa-positive breast cancer cells employing genomic and transcriptomics approaches. CARM1 was found to be predominantly and specifically recruited to ERa-bound active enhancers and essential for the transcriptional activation of cognate estrogen-induced gene transcriptional activation in response to estrogen. Global mapping of CARM1 substrates revealed that CARM1 methylates a large cohort of proteins with diverse biological functions, including regulation of intracellular estrogen receptor signaling, chromatin organization, chromatin remodeling and others. Intriguingly, a number of proteins were hypermethylated exclusively by CARM1 on a cluster of arginine residues. Exemplified by MED12, hypermethylation of these proteins by CARM1 served as a molecular beacon for recruiting coactivator protein, tudor domain-containing 3 (TDRD3), to ensure the full activation of estrogen/ERa target genes. In consistent with its critical role in estrogen-induced gene transcriptional activation, CARM1 was found to promote cell proliferation of ERa-positive breast cancer cells in vitro and tumor growth in mice. Taken together, our study uncovered a “hypermethylation” strategy utilized by CARM1 in gene transcriptional regulation, and suggested that CARM1 can server as a therapeutic target for breast cancer treatment.
Project description:While protein arginine methyltransferases (PRMTs) and PRMT-catalyzed protein methylation have been well-known to be involved in a myriad of biological processes, their roles in carcinogenesis, particularly in estrogen receptor alpha (ERa)-positive breast cancers, remain incompletely understood. Here we focused on investigating PRMT4 (also called coactivator associated arginine methyltransferase 1, CARM1) due to its high expression and the associated poor prognosis in ERa-positive breast cancers. We first uncovered the chromatin-binding landscape and transcriptional targets of CARM1 in the presence of estrogen in ERa-positive breast cancer cells employing genomic and transcriptomics approaches. CARM1 was found to be predominantly and specifically recruited to ERa-bound active enhancers and essential for the transcriptional activation of cognate estrogen-induced gene transcriptional activation in response to estrogen. Global mapping of CARM1 substrates revealed that CARM1 methylates a large cohort of proteins with diverse biological functions, including regulation of intracellular estrogen receptor signaling, chromatin organization, chromatin remodeling and others. Intriguingly, a number of proteins were hypermethylated exclusively by CARM1 on a cluster of arginine residues. Exemplified by MED12, hypermethylation of these proteins by CARM1 served as a molecular beacon for recruiting coactivator protein, tudor domain-containing 3 (TDRD3), to ensure the full activation of estrogen/ERa target genes. In consistent with its critical role in estrogen-induced gene transcriptional activation, CARM1 was found to promote cell proliferation of ERa-positive breast cancer cells in vitro and tumor growth in mice. Taken together, our study uncovered a “hypermethylation” strategy utilized by CARM1 in gene transcriptional regulation, and suggested that CARM1 can server as a therapeutic target for breast cancer treatment.
Project description:Previous studies reported that NEAT1 and its partner p54nrb are necessary for CARM1 to associate with paraspeckles and H3R26 methylation. There are also reports that CARM1 is essential for LincGET's role in guiding the ICM lineage in mouse embryos. We speculate that there may be a connection between CARM1 and lncRNA. In order to verify our guess, we conducted lncRNA-seq experiments against CARM1 control or siRNA in MDA-MB-231 cells to explore the lncRNA that may be regulated downstream of CARM1. Here, we showed that CARM1 and HIF1A co-upregulates the expression of MALAT1 in hypoxia pathway to promote carcinogenesis and metastasis in triple-negative breast cancer cells. These results indicate that there is a connection among CARM1, HIF1A and MALAT1 in triple-negative breast cancer.