Project description:INTRODUCTION:Steroidal alkaloids are found in plants of the genus Veratrum. Their toxicity manifests as gastrointestinal symptoms followed by a Bezold-Jarisch reflex: hypopnea, hypotension, and bradycardia. Some Veratrum steroidal alkaloids are also teratogens interfering with the hedgehog-2 signaling pathway, which causes cyclopsia and holoprosencephaly. We present a case of accidental poisoning from Veratrum parviflorum mistaken for the edible Allium tricoccum (ramps, wild leek). CASE HISTORY:A 27-year-old man and his 25-year-old wife presented to the emergency department with nausea, vomiting, hypotension, and bradycardia after foraging and ingesting plants that they believed to be a local native species of wild leek. METHODS:We collected and analyzed the implicated fresh plant material and both patients' serum/plasma. We used liquid chromatography-mass spectroscopy and high-resolution electrospray ionization time of flight tandem mass spectrometry to extract and characterize steroidal alkaloids from the foraged plant and patients' serum. RESULTS:Our V. parviflorum samples contained verazine, veratramine, veratridine, and cyclopamine. DISCUSSION:Steroidal alkaloids have been previously isolated from Veratrum viride and Veratrum album and toxicity has been reported mainly from V. album species. CONCLUSION:V. parviflorum toxicity manifests with gastrointestinal and cardiac symptoms. Treatment is symptomatic and supportive as with previous case reports of toxicity with other Veratrum species.
Project description:Veratrum spp. grow throughout the world and are especially prevalent in high mountain meadows of North America. All parts of Veratrum plants have been used for the treatment of ailments including injuries, hypertension, and rheumatic pain since as far back as the 1600s. Of the 17-45 Veratrum spp., Veratrum californicum alkaloids have been proven to possess favorable medicinal properties associated with inhibition of hedgehog (Hh) pathway signaling. Aberrant Hh signaling leads to proliferation of over 20 cancers, including basal cell carcinoma, prostate and colon among others. Six of the most well-studied V. californicum alkaloids are cyclopamine (1), veratramine (2), isorubijervine (3), muldamine (4), cycloposine (5), and veratrosine (6). Recent inspection of the ethanolic extract from V. californicum root and rhizome via liquid chromatography-mass spectrometry has detected up to five additional alkaloids that are proposed to be verazine (7), etioline (8), tetrahydrojervine (9), dihydrojervine (10), 22-keto-26-aminocholesterol (11). For each alkaloid identified or proposed in V. californicum, this review surveys literature precedents for extraction methods, isolation, identification, characterization and bioactivity to guide natural product drug discovery associated with this medicinal plant.
Project description:Plants belonging to the genus Veratrum have been used throughout history for their medicinal properties. During the nineteenth and twentieth centuries, phytochemical investigations revealed a host of steroidal alkaloids in Veratrum species, some of which are potent bioactives. This review discusses Veratrum species that grow in North America with a focus on the medicinal history of these plants and the steroidal alkaloids they contain. While significant reviews have been devoted to singularly describing the plant species within the genus Veratrum (botany), the staggering breadth of alkaloids isolated from these and related plants (phytochemistry), and the intricacies of how the various alkaloids act on their biological targets (physiology and biochemistry), this review will straddle the margins of the aforementioned disciplines in an attempt to provide a unified, coherent picture of the Veratrum plants of North America and the medicinal uses of their bioactive steroidal alkaloids.
| S-EPMC4217314 | biostudies-other
Project description:Veratrum mengtzeanum transcriptome data
Project description:A Veratrum piperidine chiron was prepared over 11 steps (7.9% yield) from (-)-citronellal. Three methods for the installation of the propargylic side chain onto a cyclic enamide are presented.