Project description:This SuperSeries is composed of the following subset Series: GSE5268: Effects of biphenyl on Rhodococcus sp. RHA1 GSE5269: Effects of ethylbenzene on Rhodococcus sp. RHA1 GSE5270: Effects of benzoate on Rhodococcus sp. RHA1 Refer to individual Series
Project description:Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a persistent nitramine explosive with long-lasting properties. Rhodococcus sp. strain DN22 has been discovered as one of the microorganisms capable of RDX degradation. Despite respectable studies on Rhodococcus sp. strain DN22, the proteins participating in RDX degradation (Oxidoreductase and Cytochrome P450) in the strain remain to be fragments. In this study, complete genome of Rhodococcus sp. strain DN22 was sequenced and analyzed, and the entire sequences of the two genes encoding Oxidoreductase and Cytochrome P450 in Rhodococcus sp. strain DN22 were predicted, which were validated through proteomic data. Besides, despite the identification of certain chemical substances as proposed characterized degradation intermediates of RDX, few studies have investigated the physiological changes and metabolic pathways occurring within Rhodococcus sp. cells when treated with RDX, particularly through the use of mass spectrometry-based omics. Hence, proteomics and metabolomics of Rhodococcus sp. strain DN22 were performed and analyzed with the presence or absence of RDX in the medium. A total of 3186 protein groups were identified and quantified between the two groups, with 117 proteins being significantly differentially expressed proteins. A total of 1056 metabolites were identified after merging positive and negative ion modes, among which 131 metabolites were significantly differential. Through the combined analysis of differential proteomics and metabolomics, several KEGG pathways, including two-component system, ABC transporters, alanine, aspartate and glutamate metabolism, arginine biosynthesis, purine metabolism, nitrogen metabolism, and phosphotransferase system (PTS) were found to be significantly enriched. We expect that our investigation will expand the acquaintance of Rhodococcus sp. strain DN22, and the knowledge of microbial degradation.
Project description:Transcriptional profiling in the root between ga1, ga1 scl3 and ga1 SCL3 OE. We used Affymetrix ATH1 microarrays to determine the effect of GRAS transcription factor SCL3 and gibberellin on the growth and development of the Arabidopsis root system by global transcriptome analysis and to identify new regulators in the regulatory pathway.
Project description:Transcriptional profiling in the root between ga1, ga1 scl3 and ga1 SCL3 OE. We used Affymetrix ATH1 microarrays to determine the effect of GRAS transcription factor SCL3 and gibberellin on the growth and development of the Arabidopsis root system by global transcriptome analysis and to identify new regulators in the regulatory pathway. Three-condition experiments, ga1, ga1 scl3 and ga1 SCL3 OE. Biological triplicates: 3 ga1-3 , 3 ga1-3 scl3 and 3 ga1-3 SCL3 OE
Project description:Arabidopsis brm plants depleted in a SWI/SNF-type ATPase BRM have decreased level of endogenous gibberellins and a phenotype that in many respects resembles the phenotype of mutants with repressed GA signaling or biosynthesis, like ga1-3. ga1-3/brm double mutant showed several additive and synergistic effects. To examine whether the phenotypic traits of brm, ga1-3 and ga1-3/brm lines are reflected at the gene expression level, we compared the expression profiles of brm, ga1-3, ga1-3/brm and wild-type plants using microarray analysis.