Project description:Armigeres subalbatus is a natural vector of the filarial worm Brugia pahangi, but it kills Brugia malayi microfilariae (mf) by melanotic encapsulation. Because B. malayi and B. pahangi are morphologically and biologically similar, this mosquito-parasite system serves as a valuable model for studying resistance mechanisms in mosquito vectors. Comparing Ar. subalbatus-B. pahangi susceptibility and Ar. subalbatus-B. malayi refractoriness could provide significant insight into recognition mechanisms required to mount an effective anti-filarial worm immune response in the mosquito, as well as provide considerable detail into the molecular components involved in vector competence. Accordingly, we initiated transcriptome profiling studies of Ar. subalbatus in relation to filarial worm infection to provide information on the molecular components involved in B. pahangi susceptibility for comparison with our earlier studies on B. malayi refractoriness (Aliota et al., 2007). In addition, these studies also provide information on the infection response of a natural vector, i.e., the overall transcriptional and physiological change that occurs in the mosquito as a result of parasite infection, for comparison with our previous studies that employed a highly susceptible laboratory model, Aedes aegypti (Erickson et al., 2009). The time course chosen facilitated an examination of key events in the development of the parasite, beginning with the very start of filarial worm infection and spanning to well after infective-stage parasites had completed development in the mosquito. Herein, we demonstrate that filarial worm susceptibility in Ar. subalbatus is a highly complex process during the first 24 hours of infection. It is a process that involves many factors of both known and unknown function which are most likely associated with filarial worm penetration through the midgut lumen, invasion into thoracic muscle cells, and maintenance of homeostasis in the hemolymph environment. The data show that there are distinct and separate transcriptional patterns associated with filarial worm susceptibility as compared to refractoriness, and that an infection response in Ar. subalbatus, a natural vector, can differ significantly from that observed in Ae. aegypti, a common laboratory model. Finally, the data presented herein provide us with a cadre of information to design wet lab experiments and select candidates for further study to more fully dissect the nature of the anti-filarial worm immune response in this mosquito-parasite system.
Project description:BackgroundArmigeres subalbatus is a natural vector of the filarial worm Brugia pahangi, but it kills Brugia malayi microfilariae by melanotic encapsulation. Because B. malayi and B. pahangi are morphologically and biologically similar, comparing Ar. subalbatus-B. pahangi susceptibility and Ar. subalbatus-B. malayi refractoriness could provide significant insight into recognition mechanisms required to mount an effective anti-filarial worm immune response in the mosquito, as well as provide considerable detail into the molecular components involved in vector competence. Previously, we assessed the transcriptional response of Ar. subalbatus to B. malayi, and now we report transcriptome profiling studies of Ar. subalbatus in relation to filarial worm infection to provide information on the molecular components involved in B. pahangi susceptibility.Methodology/principal findingsUtilizing microarrays, comparisons were made between mosquitoes exposed to B. pahangi, B. malayi, and uninfected bloodmeals. The time course chosen facilitated an examination of key events in the development of the parasite, beginning with the very start of filarial worm infection and spanning to well after parasites had developed to the infective stage in the mosquito. At 1, 3, 6, 12, 24 h post infection and 2-3, 5-6, 8-9, and 13-14 days post challenge there were 31, 75, 113, 76, 54, 5, 3, 13, and 2 detectable transcripts, respectively, with significant differences in transcript abundance (increase or decrease) as a result of parasite development.Conclusions/significanceHerein, we demonstrate that filarial worm susceptibility in a laboratory strain of the natural vector Ar. subalbatus involves many factors of both known and unknown function that most likely are associated with filarial worm penetration through the midgut, invasion into thoracic muscle cells, and maintenance of homeostasis in the hemolymph environment. The data show that there are distinct and separate transcriptional patterns associated with filarial worm susceptibility as compared to refractoriness, and that an infection response in Ar. subalbatus can differ significantly from that observed in Ae. aegypti, a common laboratory model.
Project description:C-type lectins (CTLs) are a superfamily of calcium-dependent carbohydrate binding proteins containing at least one carbohydrate-recognition domain (CRD) and they are present in almost all metazoans. Insect CTLs may function as pattern-recognition receptors and play important roles in innate immunity. In this study, we selected five AsCTLs from the mosquito Armigeres subalbatus, a natural vector of filarial nematodes, and performed both in vitro and in vivo studies to elucidate their functions in innate immunity. AsCTLMA15, AsCTLGA5 and AsCTL15 were mainly expressed in hemocytes, AsCTL16 was expressed in fat body, while AsCTLMA11 was expressed in both hemocytes and fat body, and only AsCTLMA11 and AsCTL16 were expressed at high levels in adult females. In vitro binding assays showed that all five recombinant AsCTLs could bind to different microbial cell wall components, including lipopolysaccharide (LPS), lipid A, peptidoglycan (PG), lipoteichoic acid (LTA), zymosan and laminarin (beta-1,3-glucan). Recombinant AsCTLs also bound to several Gram-negative and Gram-positive bacteria, and could agglutinate bacterial cells. Injection of double-stranded RNAs (dsRNAs) could significantly reduce expression of the five AsCTL mRNAs, and the survival of mosquitoes treated with dsRNA to AsCTLGA5 was significantly decreased after Escherichia coli infection, but did not change significantly after Micrococcus luteus infection compared to the control groups, suggesting that Ar. subalbatus AsCTLGA5 may participate in innate immunity against E. coli.
Project description:BackgroundArmigeres subalbatus is a natural vector of the filarial worm Brugia pahangi, but it rapidly and proficiently kills Brugia malayi microfilariae by melanotic encapsulation. Because B. malayi and B. pahangi are morphologically and biologically similar, the Armigeres-Brugia system serves as a valuable model for studying the resistance mechanisms in mosquito vectors. We have initiated transcriptome profiling studies in Ar. subalbatus to identify molecular components involved in B. malayi refractoriness.ResultsThese initial studies assessed the transcriptional response of Ar. subalbatus to B. malayi at 1, 3, 6, 12, 24, 48, and 72 hrs after an infective blood feed. In this investigation, we initiated the first holistic study conducted on the anti-filarial worm immune response in order to effectively explore the functional roles of immune-response genes following a natural exposure to the parasite. Studies assessing the transcriptional response revealed the involvement of unknown and conserved unknowns, cytoskeletal and structural components, and stress and immune responsive factors. The data show that the anti-filarial worm immune response by Ar. subalbatus to be a highly complex, tissue-specific process involving varied effector responses working in concert with blood cell-mediated melanization.ConclusionThis initial study provides a foundation and direction for future studies, which will more fully dissect the nature of the anti-filarial worm immune response in this mosquito-parasite system. The study also argues for continued studies with RNA generated from both hemocytes and whole bodies to fully expound the nature of the anti-filarial worm immune response.
Project description:Background:Plasmodium relictum is one of the most important avian malaria species, which is mainly seen in wild birds, with infections reported in more than 70 different species and at high prevalence. Aim:The aim of this study was to determine the molecular prevalence of Plasmodium spp. in mosquitoes collected in China. Method:A Plasmodium -specific fluorescence resonance energy transfer (FRET) polymerase chain reaction (PCR) was established in this study to analyze five species of mosquitoes (1,620 Culex pipiens pallens, 806 Aedes albopictus, 377 Armigeres subalbatus, 168 Anopheles sinensis, and 80 Culex tritaeniorhynchus) collected in hand nets from homes in 25 provinces of China. Results:Only females originated from six provinces were determined to be positive (0.6%, 10/1,809). Plasmodium species were detected in three mosquito species, such as C. pipiens pallens (0.5%, 8/1,620), A. sinensis (0.6%, 1/168), and A. subalbatus (0.3%, 1/377). Of the three mosquito species positive for P. relictum, only C. pipiens pallens is known to feed on birds and is recognized as the natural vector of P. relictum. Conclusion:This is the first time that P. relictum has been detected in A. sinensis and A. subalbatus. P. relictum, the agent of avian malaria, was present in mosquitoes in China, including mosquito species not previously thought to be the vectors.
Project description:The family Rhabdoviridae contain important human and mammalian pathogens that are vectored by different arthropod species. The ground supernatants of mosquitoes were used to inoculate in BHK-21 and C6/36 cells for virus isolation. Then, the viral complete genome sequence was obtained and used for phylogenetic analysis. In this study, we observed a cytopathic effect (CPE) in mosquito cells (C6/36) and rod-like virion after inoculating a pool of Armigeres subalbatus samples collected in Shanxi Province, China, in 2019 (SX1916). Meta-transcriptomics sequencing revealed the presence of two distinctive rhabdoviruses with similar abundance levels, namely, Shanxi Armigeres subalbatus rhabdovirus (SXARV) and Shanxi Arboretum virus (SXABTV). Despite the fact that the SXARV genome (9590 nt) was much shorter than that of SXABTV (11,480 nt), both belonged to the Almendravirus group within Rhabdoviridae whose genomes encoded five proteins (N, P, M, G, and L) and a small hydrophobin (U1) and the difference in lengths is mainly caused by a substantially shorter N protein encoded by SXARV. On the phylogenetic tree, SXABTV was closely related (90.7% amino acid identity at L protein) with the Arboretum virus isolated from Psorophora albigenu mosquitoes in Peru in 2014, whereas SXARV was distantly related to Rio Chico virus (63.3% amino acid identity), a genetic distance large enough to be defined as a new species within Rhabdoviridae. Collectively, we report a simultaneous isolation of two related rhabdoviruses from Armigeres subalbatus that marked the circulation of almendraviruses in Shanxi, China.