Project description:Transcriptomes of wild-type Nicotiana benthamiana plants inoculated with plum pox virus (PPV) or the P1Pro clone, a PPV deletion mutant that lacks the self-cleavage inhibitory domain of the P1 leader protease; in addition, N. benthamiana nahG-expressing plants inoculated with P1Pro were analyzed to identify genes whose expression is altered by P1Pro infections but does not depend on salicylic acid signaling.
Project description:Nicotiana benthamiana plants were infected with Asparagus Virus 2 and its mutant version. Upper non-inoculated leaves were collected at various time points and used for sample preparation. RNA-seq was performed on the WT infected, mutant infected and mock uninfected samples. Ribo-seq was performed on the WT infected and mutant infected samples.
Project description:Objectives: Our work focuses on the responses of Solanaceous plants to viruses that cause economically important diseases in tree fruits. Using mock inoculated leaf tissue as a reference, we plan to compare the gene expression profiles of Nicotiana Benthamiana plants infected with one of three viruses; Plum Pox Potyvirus (PPV), Tomato Ringspot Nepovirus (ToRSV), and Prunus Nectrotic Ringspot Nepovirus (PNRSV). Our goals are as follows: (1) Identify genes that are induced/repressed in response to individual viruses. (2) Identify genes that are induced/repressed in response to all 3 viruses. (3) Compare results to existing potato array data to look for similarities in responses to other pathogens. Experimental Design: Nicotiana benthamiana plants were inoculated with one of three viruses: PPV, ToRSV, or PNRSV. 3 week old plants were inoculated by rubbing virus infected plant sap onto leaves dusted with carborundum. Control plants were mock inoculated using sap from healthy plants. All plants were maintained in a growth chamber at 22C for 18 days. 8 plants were inoculated with each virus or mock inoculated. This experiment was repeated twice. 4 biological replicates derived from 2 virus infected plants from each replica experiment (4 plants) are to be used for hybridizations. RNA from all mock inoculated plants was similarly pooled to create 4 biological replicates. Each replicate control will serve as a universal reference sample that is to be hybridized pair wise with each of the three virus infected samples. RNA extraction: After 18 days, un-inoculated leaves displaying clear symptoms were harvested and immediately frozen in liquid N2. Total RNA was purified using Trizol according to TIGRs listed protocol. RNA was subsequently treated with Turbo DNA-free RNase (Ambion cat#1907). Finally, total RNA was further purified on RNeasy columns (Qiagen) according to manufacturer’s instructions and quantified using a Nanodrop spectrophotometer. Keywords: Reference design 23 hybs total
Project description:Micrarray analysis was used to identify gene expression changes associated with disease development and virus movement in N.benthamina plants induced by infection with the SACMV 1-Plex , 385K array Nicotiana benthamiana (NimbleGen design name: 110121_N_benthamiana_60mer_exp) was used in this study to monitor changes in gene expression levels in SACMV- infected leaf tissue. Three biological replicates were used for infected leaf tissue and one pooled mock-inoculated sample was used as a control/reference.
Project description:Objectives: Our work focuses on the responses of Solanaceous plants to viruses that cause economically important diseases in tree fruits. Using mock inoculated leaf tissue as a reference, we plan to compare the gene expression profiles of Nicotiana Benthamiana plants infected with one of three viruses; Plum Pox Potyvirus (PPV), Tomato Ringspot Nepovirus (ToRSV), and Prunus Nectrotic Ringspot Nepovirus (PNRSV). Our goals are as follows: (1) Identify genes that are induced/repressed in response to individual viruses. (2) Identify genes that are induced/repressed in response to all 3 viruses. (3) Compare results to existing potato array data to look for similarities in responses to other pathogens. Experimental Design: Nicotiana benthamiana plants were inoculated with one of three viruses: PPV, ToRSV, or PNRSV. 3 week old plants were inoculated by rubbing virus infected plant sap onto leaves dusted with carborundum. Control plants were mock inoculated using sap from healthy plants. All plants were maintained in a growth chamber at 22C for 18 days. 8 plants were inoculated with each virus or mock inoculated. This experiment was repeated twice. 4 biological replicates derived from 2 virus infected plants from each replica experiment (4 plants) are to be used for hybridizations. RNA from all mock inoculated plants was similarly pooled to create 4 biological replicates. Each replicate control will serve as a universal reference sample that is to be hybridized pair wise with each of the three virus infected samples. RNA extraction: After 18 days, un-inoculated leaves displaying clear symptoms were harvested and immediately frozen in liquid N2. Total RNA was purified using Trizol according to TIGRs listed protocol. RNA was subsequently treated with Turbo DNA-free RNase (Ambion cat#1907). Finally, total RNA was further purified on RNeasy columns (Qiagen) according to manufacturer’s instructions and quantified using a Nanodrop spectrophotometer. Keywords: Reference design
Project description:Transcriptome sequencing from Nicotiana benthamiana leaves non-infected and infected with Turnip mosaic virus at 6 days post inoculation.
Project description:In this study we used vascular specific promoters and a translating ribosome affinity purification strategy to identify phloem-associated translatome responses to infection by tobacco mosaic virus (TMV) in the systemic host Nicotiana benthamiana. Three different promoter:FLAG-RPL18 lines were used. These included two phloem specific promoters (pSUC2 and pSULTR2;2) as well as the more ubiquitously expressed cauliflower mosaic virus 35S promoter (p35S). Immunopurification of ribosome-mRNA complexes was accomplished by the method described in Reynoso et al. (Plant Functional Genomics: Methods and Protocols, 185-207; 2015). The dataset includes samples from the leaves of 5-week-old plants inoculated with TMV (1 mg/mL) or mock inoculated with sterile water.
Project description:To investigate the mechanism under the cross protection between HLSV and TMV, microarray analysis was conducted to examine the transcriptional levels of global host genes during cross protection, using Tobacco Gene Expression Microarray, 4x44k slides. The transcriptional level of some host genes corresponded to accumulation level of TMV. Some host genes were up-regulated only by HLSV. The gene expression in Nicotiana benthamiana during cross protection was measured at 12 days post HLSV or mock buffer inoculated as well as TMV infected N. benthamiana which pre-inoculated HLSV or mock bufer at 3 dpi (which is equal to 15 dpi by HLSV).
Project description:Many virus diseases of economic importance to agriculture result from mixtures of different pathogens invading the host at a given time. This contrasts with the relatively scarce studies available on the molecular events associated with virus-host interactions in mixed infections. In comparison to single infections, co-infection of Nicotiana benthamiana with Potato virus X (PVX) and Potato virus Y (PVY) resulted in increased systemic symptoms (synergism) that led to necrosis of the newly emerging leaves, and the plant death. A comparative transcriptional analysis was undertaken to identify quantitative and qualitative differences in gene expression during this synergistic infection, and to correlate these changes with the severe symptoms it caused. Global transcription profiles of doubly-infected leaves were compared with those from singly-infected leaves using gene ontology enrichment analysis and metabolic pathway annotator software. Functional gene categories altered by the double infection comprise suites of genes regulated coordinately, which are associated with chloroplast functions (down-regulated), protein synthesis and degradation (up-regulated), carbohydrate metabolism (up-regulated), and response to biotic stimulus and stress (up-regulated). The expression of reactive oxygen species-generating enzymes as well as several mitogen-activated protein kinases, were also significantly induced. Accordingly, synergistic infection induced a severe oxidative stress in N. benthamiana leaves, as judged by increases in lipid peroxidation, and by the generation of superoxide radicals in chloroplasts, which correlated with the misregulation of antioxidative genes in microarray data. Interestingly, expression of genes encoding oxylipin biosynthesis was uniquely up-regulated by the synergistic infection. Virus-induced gene silencing of alfa-dioxygenase1 delayed cell death during PVX-PVY infection. Using mock inoculated leaf tissue as a reference, we compare the gene expression profiles of Nicotiana benthamiana plants infected with one of two viruses, Potato virus X (PVX) or Potato virus Y (PVY), or the combination PVX plus PVY. 3 biological replicates per treatment were independently grown and haversted.
Project description:Nicotiana benthamiana was infected with several strains of grapevine fanleaf virus (GFLV). Apical tissue was collected 4, 7, and 12 days after inoculation, with identical samples for shotgun proteomics and transcriptomics analysis. Five leaf discs per leaf were collected a pooled by three plants into a single tube at each time point. Five biological replicates represent each treatment at each time point for a total of 75 samples. Two samples were lost between sample processing and data acquisition. The analysis methods between proteomics and transcriptomics were then cross-analyzed for host genes responsible for phenotypic differences upon infection.