Project description:Islet β cells suffer from de- and trans-differentiation after injury. We used single cell RNA sequencing (scRNA-seq) to analyze the diversity of β cells in from STZ-induced diabetes.
Project description:Objectives The streptozotocin (STZ) model is widely used in diabetes research. However, the cellular and molecular states of pancreatic endocrine cells in this model remain unclear. This study explored the molecular characteristics of islet cells treated with STZ and re-evaluated β-cell dysfunction and regeneration in the STZ model. Methods We performed single-cell RNA sequencing of pancreatic endocrine cells from STZ-treated mice. High-quality sequencing data from 2,999 cells were used to identify clusters via Louvain clustering analysis. Principal component analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE), uniform manifold approximation and projection (UMAP), force-directed layout (FDL), and differential expression analysis were used to define the heterogeneity and transcriptomic changes in islet cells. In addition, qPCR and immunofluorescence staining were used to confirm findings from the sequencing data. Results Untreated β-cells were divided into two populations at the transcriptomic level, a large high-Glut2 expression (Glut2high) population and a small low-Glut2 expression (Glut2low) population. At the transcriptomic level, Glut2low β-cells in adult mice did not represent a developmentally immature state, although a fraction of genes associated with β-cell maturation and function were downregulated in Glut2low cells. After a single high-dose STZ treatment, most Glut2high cells were killed, but Glut2low cells survived and over time changed to a distinct cell state. We did not observe conversion of Glut2low to Glut2high β-cells up to 9 months after STZ treatment. In addition, we did not detect transcriptomic changes in the non-β endocrine cells or a direct trans-differentiation pathway from the α-cell lineage to the β-cell lineage in the STZ model. Conclusions We identified the heterogeneity of β-cells in both physiological and pathological conditions. However, we did not observe conversion of Glut2low to Glut2high β-cells, transcriptomic changes in the non-β endocrine cells, or direct trans-differentiation from the α-cell lineage to the β-cell lineage in the STZ model. Our results clearly define the states of islet cells treated with STZ and allow us to re-evaluate the STZ model widely used in diabetes studies.
Project description:Streptozotocin (STZ) is an anti-cancer drug that is primarily used to treat neuroendocrine tumors (NETs) in clinical settings and develop type 1 diabetes rodent models in experimental fields. STZ is incorporated into cells through the glucose transporter, GLUT2, which is primarily expressed in pancreatic β-cells or proximal tubular epithelial cells in the kidney. However, its cytotoxic effects on kidney cells have been underestimated and the underlying mechanisms remain unclear. We herein demonstrated that DNA damage and subsequent p53 signaling were responsible for the development of STZ-induced tubular epithelial injury. We detected tubular epithelial DNA damage in NET patients treated with STZ. Unbiased transcriptomics of tubular epithelial cells in vitro showed the activation of the p53 signaling pathway by STZ. STZ induced DNA damage and activated p53 signaling in vivo in a dose-dependent manner, resulting in reduced membrane transport. The localization of STZ-induced kidney injury was limited to within the kidney cortex, which was independent of blood glucose. The pharmacological inhibition of p53 and sodium-glucose transporter 2 (SGLT2) mitigated STZ-induced epithelial injury. However, the cytotoxic effects of STZ on pancreatic β-cells were preserved in SGLT2 inhibitor-treated mice. The present results demonstrate the strong proximal tubular-specific cytotoxicity of STZ and the underlying mechanisms in vivo, which may be ameliorated by a SGLT2 inhibitor pretreatment. Since the cytotoxic effects of STZ against β-cells were not impaired by dapagliflozin, a pretreatment with a SGLT2 inhibitor has potential as a preventative remedy for kidney injury in NET patients treated with STZ.
Project description:Background and Aims: It is well demonstrated that in the beta cell population of the pancreas there is a dynamic turnover, which results from the net balance of several processes; beta cell replication, apoptosis and neogenesis. These processes have been studied in partial pancreatectomy and glucagon-like peptide 1 treated animals, where an increase in pancreas regeneration has been observed. Similarly, sodium tungstate, which decreases hyperglycemia in several animal models of diabetes, promotes a rise in the beta cell mass of nSTZ and STZ animals. However, the molecular mechanisms underlying this pancreas regeneration remain unknown. Therefore the objective of this study is to identify which genes are up or down regulated in the increase of the beta cell population of STZ rats treated with sodium tungstate. Materials and methods: Adult male Wistar (225-250 g) rats were kept under a constant 12-hour light-dark cycle and rats were kept under a constant 12-hour light-dark cycle and were allowed to eat and drink freely. Diabetes was induced by a single i.p. injection of streptozotocin (STZ) (70 mg/Kg body weight) in 0.9% NaCl with 100 mmol/L sodium citrate buffer (pH 4.5). Diabetes was confirmed by determination of its hyperglycaemia (>500mg/dL [Reflotron, Roche Diagnostic]). Healthy rats received an i.p. injection of the vehicle. Treatment started 7 days after the STZ or vehicle injection. Diabetic and healthy rats were divided into two groups. In the first (untreated), rats received deionized drinking water; in the second (treated) group, they were given a solution of sodium tungstate. During the first week of treatment, the rats received a solution of 0.7 mg/mL and in the next 4-5 weeks, the concentration was increased to 2 mg/mL. At the end of the experiment, the animals were sacrificed and pancreatic RNA isolated. Three chips (Affymetrix RAE-230A) were hybridized for each of the four experimental groups (untreated and treated healthy rats and untreated and treated diabetic rats). The raw intensity data obtained from the microarrays was normalized and summarized using the Bioconductor package RMA. Keywords = pancreas regeneration Keywords = STZ Keywords = diabetes Keywords = tungstate Keywords = insulin-like agents Keywords = beta cell plasticity Keywords = neogenesis Keywords: ordered
Project description:Chemicals, such as MNU (N-methyl-N-nitrosourea) and NaIO3 (sodium iodate), are widely used to induce retinal degeneration in rodents. Streptozotocin (STZ) is an analog of N-acetyl glucosamine in which an MNU moiety is linked to a hexose and has a special toxic effect on insulin-producing pancreatic β-cells. It is commonly used to induce hyperglycemia to model diabetes. While intracerebroventricular injection of STZ can produce Alzheimer's disease independent of hyperglycemia, most retinal studies using STZ focus on the effects of hyperglycemia on the retina, but whether STZ has any impact on retinal cells independent of hyperglycemia is unknown. We aimed to investigate the role of cytotoxicity of STZ in rat retina. Intravitreal (5ug or 10ug) or subcutaneous (30mg/kg) injection of STZ at the early stage of newborn rats couldn’t induce hyperglycemia but caused NSIR (neonatal STZ-induced retinopathy), including reduced ERG amplitudes, retinal rosettes and apoptosis, cell cycle arrest, microglial activation, and delayed retinal angiogenesis. STZ did not affect the early-born retinal cell types but significantly reduced the late-born ones. Short-term and long-term hyperglycemia had no significant effects on the NSIR phenotypes. RNA sequencing revealed that STZ induces oxidative stress and activates the p53 pathway of retinal cells. Locally or systemically, STZ injection after P8 couldn’t induce NSIR when all retinal progenitors exit the cell cycle. Thus, NSIR in rats is independent of hyperglycemia but due to STZ’s direct cytotoxic effects on retinal progenitor cells. NSIR is a typical reaction to STZ-induced retinal oxidative stress and DNA damage. This significant finding suggests that NSIR may be a valuable model for studying retinal progenitor DNA damage-related diseases, potentially leading to new insights and treatments.
Project description:Low protein (LP) during gestation leads to low birth weight and poor fetal growth, with altered islet development and glucose intolerance in adulthood. Additionally, LP offspring fail to regenerate their β-cells following depletion with streptozotocin (STZ), in contrast to control-fed offspring that are capable of β-cell regeneration. Our objective was to identify genes and signalling pathways that may be critically altered in LP offspring rendering them susceptible to develop long term glucose intolerance and decreased β-cell plasticity.
Project description:Bezafibrate (BEZ), a pan activator of peroxisome proliferator-activated receptors (PPARs), is generally used to treat hyperlipidemia. Clinical trials on patients suffering from type 2 diabetes indicated that BEZ also has beneficial effects on glucose metabolism, but the underlying mechanisms remain elusive. Much less is known about the function of BEZ in type 1 diabetes. Here, we show that BEZ treatment markedly improves hyperglycemia, glucose and insulin tolerance in streptozotocin (STZ)-treated mice, an insulin-deficient mouse model of type 1 diabetes presenting with very high blood glucose levels. Furthermore, BEZ-treated mice also exhibited improved metabolic flexibility as well as an enhanced mitochondrial mass and function in the liver. Our data demonstrate a beneficial effect of BEZ treatment on STZ mice reducing diabetes and suggest that BEZ ameliorates impaired glucose metabolism possibly via augmented hepatic mitochondrial performance, improved insulin sensitivity and metabolic flexibility. We performed gene expression microarray analysis on liver tissue derived from streptozotocin-treated mice treated with bezafibrate in addition.
Project description:Phloridzin is a dihydrochalcone typically contained in apples. A diet containing 0.5 % phloridzin significantly improves hyperglycemia but not hypoinsulinemia and tissue lipid peroxidation in streptozotocin (STZ)-induced diabetic mice after 14 days. The phloridzin diet has no effect on the alteration of hepatic gene expression in STZ-induced diabetic mice. A quantitative RT-PCR analysis showed a reversal of the STZ induction of the sodium/glucose cotransporter gene Sglt1 and the drug-metabolizing enzyme genes Cyp2b10 and Ephx1 in the small intestine of mice fed a 0.5% phloridzin diet. These mice also showed a reversal of the STZ-mediated renal induction of the glucose-regulated facilitated glucose transporter gene Glut2. Dietary phloridzin improved the abnormal elevations in blood glucose level and the overexpression of Sglt1, Cyp2b10 and Ephx1 in the small intestine of STZ-induced diabetic mice.
Project description:Quercetin is a food component that may ameliorate the diabetic symptoms. We examined hepatic gene expression of BALB/c mice with streptozotocin (STZ)-induced diabetes to elucidate the mechanism of the protective effect of dietary quercetin on diabetes-associated liver injury. We fed STZ-induced diabetic mice with diets containing 0.1% or 0.5% quercetin for 2 weeks and compared the patterns of hepatic gene expression in these groups of mice using a DNA microarray. Diets containing 0.1% or 0.5% quercetin lowered the STZ-induced increase in blood glucose levels and improved plasma insulin levels. A cluster analysis of the hepatic gene expressions showed that 0.5% quercetin diet suppressed STZ-induced alteration of gene expression. Gene set enrichment analysis (GSEA) and quantitative RT-PCR analysis showed that the quercetin diets had their greatest suppressive effect on the STZ-induced elevation of expression of cyclin dependent kinase inhibitor p21(WAF1/Cip1) (Cdkn1a).