Project description:We isolated an efficient doxycycline degrading strain Chryseobacterium sp. WX1. To investigate gene expression patterns during doxycyclinedegradation by strain WX1, we conducted a comparative transcriptomic analysis using cultures of strain WX1 with and without doxycycline addition. The RNA-Seq data revealed that 90.44-96.56% of the reads mapped to the genome of Chryseobacterium sp. WX1 across all samples. Differentially expressed genes (DEGs) analysis (|log2FC| >2; p < 0.01) showed that 693 genes were significantly up-regulated and 592 genes were significantly down-regulated.
Project description:Lactococcus piscium strain MKFS47 is a psychrotrophic spoilage lactic acid bacterium, isolated from the cold-stored modified atmosphere packaged broiler filet strips with the first signs of spoilage. For the experiment L. piscium MKFS47 was grown in MRS broth without acetate with 2% glucose, samples were taken at 3h, 5h and 11h in three replicates. The extracted RNA was sequenced using SOLiD 5500XL. RNA-seq reads were mapped against L. piscium MKFS47 genome and were counted per gene using Lifescope software. The experiment was conducted to identify the time-course differential expression of the L. piscium MKFS47 genes.
Project description:In this study, we isolated a potent doxycycline-degrading bacterium, Chryseobacterium sp. WX1, from environmental samples. To elucidate the molecular mechanisms underlying doxycycline degradation by strain WX1, we assessed and interpreted the proteomic profiles of Chryseobacterium sp. WX1 under conditions both with and without doxycycline exposure.
Project description:CPS-1 is a subclass B3 metallo-?-lactamase from a Chryseobacterium piscium isolate collected from soil, showing 68% amino acid identity to the GOB-1 enzyme. CPS-1 was overproduced in Escherichia coli Rosetta (DE3), purified by chromatography, and biochemically characterized. This enzyme exhibits a broad-spectrum substrate profile, including penicillins, cephalosporins, and carbapenems, which overall resembles those of L1, GOB-1, and acquired subclass B3 enzymes AIM-1 and SMB-1.