Project description:We present MultiEditR, the first algorithm specifically designed to detect and quantify RNA editing from Sanger sequencing (z.umn.edu/multieditr). Although RNA editing is routinely evaluated by measuring the heights of peaks from in Sanger sequencing traces, the accuracy and the precision of this approach has yet to be evaluated against gold-standards next-generation sequencing methods. Through a comprehensive comparison to RNA-seq and amplicon based deep sequencing, we show that MultiEditR is accurate, precise, and reliable for detecting endogenous and programmable RNA editing.
Project description:We used the deep sequencing to analyze the sgRNA coverage of Dnd1 library in 4B2N1-DP1 and 4B2N1-DP2 cell lines. The amplicon obtained from PCR reaction from genome using high-fidelity DNA polymerase. By obtaining over 10 million reads of each sample from deep sequencing, we mapped the reads to the reference sequence and then calculated coverage and counts. The results showed that the hit number of different sgRNAs were variable
Project description:Genome editing was conducted on a t(3;8) K562 model to investigate the effects of deleting different modules or CTCF binding sites within the MYC super-enhancer. To check mutations after targeting with CRISPR-Cas9 we performed amplicon sequencing using the Illumina PCR-based custom amplicon sequencing method using the TruSeq Custom Amplicon index kit (Illumina). The first PCR was performed using Q5 polymerase (NEB), the second nested PCR with KAPA HiFi HotStart Ready mix (Roche). Samples were sequenced paired-end (2x 250bp) on a MiSeq (Illumina).
Project description:We studied the KRAS and NRAS mutational status in pediatric MLL-AF4+ leukemia patients by means of ultra deep amplicon sequencing. The gene expression profiles of RAS wild type and RAS mutated patients were investigated by gene expression analysis. We showed that mutated patients were characterized by a RAS related expression signature.
Project description:To identify cell adhesion molecules (CAMs) targeting bacterial membrane proteins within a synthetic bacteria-displayed nanobody library, we present a comprehensive whole-cell screening platform. This involves targeted amplicon sequencing to discover nanobodies targeting the natural adhesin, TraN. Furthermore, we employ deep mutational engineering to enhance the binding affinity of these nanobodies toward TraN.
Project description:Triple Negative Breast Cancer (TNBC) is an aggressive subtype of breast cancer with high intra-tumoral heterogeneity, frequently resistant to treatment and no known targeted therapy available to improve patient outcomes. It has been hypothesized that the genomic architecture of a TNBC tumour evolves over time, both before, and during therapy, leading to therapy resistance and a high propensity to relapse. Whether this is an inherent property of the tumour or acquired over time is not well characterized. Despite this important clinical implication, limited studies have been carried out to unravel temporal evolution of TNBC over time. Herein, we report an OMICS based analysis of three TNBC patients who were longitudinally sampled during their treatment at different times of relapse. We recruited three TNBC patients at the time of their first relapse who were then followed-up through the course of their treatment. We obtained retrospective samples (tumour samples) from patient tumours at diagnosis (before neo-adjuvant chemotherapy - NACT) at surgery (post NACT) and prospectively sampled them at each subsequent relapse (tumour, blood plasma, and buffy coat) as determined by RECIST criteria. Tumor and buffy coat DNA were subjected to whole exome sequencing (WES) at 200x, and SNP arrays for copy number variation (CNV) analysis. RNA from tumour samples at relapse was subjected to whole transcriptome sequencing. Pathogenic germline BRCA1 variants identified in WES were validated using Sanger sequencing. 1084 somatic mutations identified in whole exome sequencing of all tumour tissues (n=13) from three patients, were subjected to a custom amplicon ultra-deep sequencing assay at 30,000X in their germline DNA (n=3), tumour DNA (n=10), and cfDNA from plasma samples at relapse (n=8). Copy number corrected allele frequencies, tumour ploidy, tumour purity, and ultra-deep sequencing assay derived variant allele frequencies were used to infer clonal and phylogenetic architecture of each patient as it evolved under selective pressure of therapy over time. Clonality analysis incorporating allele fractions from ultra-deep sequencing identified clones comprising of mutations that are present throughout the course of therapy which we term as founding clones and stem mutations respectively. Such founding clones comprising of stem mutations in all 3 patients were present throughout the course of treatment, irrespective of change in treatment modalities. These stem clones included well characterized cancer related genes like PDGFRB & ARID2 (Patient 02), TP53, BRAF & CSF3R (Patient 04) and ESR1, APC, EZH2 & TP53 (Patient 07). Such branching evolution is seen in all three patients wherein the dominant clone (stem clone) acquires additional mutations to form sub-clones, while persisting over time. These sub-clones may be chemo and radio resistant, while also providing for organ specific metastatic potential. Allele fractions of expressed variants inferred from RNA-Seq data co-related with allele fractions from WES data indicating that all somatic.
Project description:Triple Negative Breast Cancer (TNBC) is an aggressive subtype of breast cancer with high intra-tumoral heterogeneity, frequently resistant to treatment and no known targeted therapy available to improve patient outcomes. It has been hypothesized that the genomic architecture of a TNBC tumour evolves over time, both before, and during therapy, leading to therapy resistance and a high propensity to relapse. Whether this is an inherent property of the tumour or acquired over time is not well characterized. Despite this important clinical implication, limited studies have been carried out to unravel temporal evolution of TNBC over time. Herein, we report an OMICS based analysis of three TNBC patients who were longitudinally sampled during their treatment at different times of relapse. We recruited three TNBC patients at the time of their first relapse who were then followed-up through the course of their treatment. We obtained retrospective samples (tumour samples) from patient tumours at diagnosis (before neo-adjuvant chemotherapy - NACT) at surgery (post NACT) and prospectively sampled them at each subsequent relapse (tumour, blood plasma, and buffy coat) as determined by RECIST criteria. Tumor and buffy coat DNA were subjected to whole exome sequencing (WES) at 200x, and SNP arrays for copy number variation (CNV) analysis. RNA from tumour samples at relapse was subjected to whole transcriptome sequencing. Pathogenic germline BRCA1 variants identified in WES were validated using Sanger sequencing. 1084 somatic mutations identified in whole exome sequencing of all tumour tissues (n=13) from three patients, were subjected to a custom amplicon ultra-deep sequencing assay at 30,000X in their germline DNA (n=3), tumour DNA (n=10), and cfDNA from plasma samples at relapse (n=8). Copy number corrected allele frequencies, tumour ploidy, tumour purity, and ultra-deep sequencing assay derived variant allele frequencies were used to infer clonal and phylogenetic architecture of each patient as it evolved under selective pressure of therapy over time. Clonality analysis incorporating allele fractions from ultra-deep sequencing identified clones comprising of mutations that are present throughout the course of therapy which we term as founding clones and stem mutations respectively. Such founding clones comprising of stem mutations in all 3 patients were present throughout the course of treatment, irrespective of change in treatment modalities. These stem clones included well characterized cancer related genes like PDGFRB & ARID2 (Patient 02), TP53, BRAF & CSF3R (Patient 04) and ESR1, APC, EZH2 & TP53 (Patient 07). Such branching evolution is seen in all three patients wherein the dominant clone (stem clone) acquires additional mutations to form sub-clones, while persisting over time. These sub-clones may be chemo and radio resistant, while also providing for organ specific metastatic potential. Allele fractions of expressed variants inferred from RNA-Seq data co-related with allele fractions from WES data indicating that all somatic.
Project description:To assess compatibility in sequence analysis we compared results from Sanger sequencing (with sequencing threshold >15%) and Next Generation Sequencing (with sequencing treshold >5%). Totally, there were 60 patients included in this part of the study. Here we demonstrate how reliable tool for fast and accurate identification of low-level viral quasispecies is deep-sequencing.