Project description:Global warming has become a critical challenge to food safety, causing severe yield losses of major crops worldwide. Here, we report that the endophytic bacterium Enterobacter sp. SA187 induces thermotolerance of crops in a sustainable manner. Microbiome diversity of wheat plants is positively influenced by SA187 in open field agriculture, indicating that beneficial microbes can be a powerful tool to enhance agriculture in open field agriculture.
Project description:Enterobacter sp. SA187 is a facultative endophytic bacterium conferring multi-abiotic stress tolerance to various plant hosts. Upon interaction with plant tissues, a significant proportion of the typically yellow SA187 lose pigmentation. This phenotypic shift becomes more prominent with extended host plant colonization and under stress conditions, such as salinity. To explore the underlying mechanisms and ecological significance of this variation, we employed genome sequencing, comparative genomics, transcriptomics, and metabolic characterization. In all white SA187 variants, weidentified consistent point mutations in the rpoS gene, which encodes a global regulatory sigma factor. These rpoS loss-of-function mutations lead to alterations in gene regulation, affecting growth, morphology, biofilm formation, motility, oxidative stress responses and carotenoid production. Notably, the rpoS mutants demonstrated enhanced adaptability from a free living to an endophytic life style. Whereas the desert soil is characterized by highly alkaline conditions, the apoplast of the host plant is an acidic environment accompanied with the availability of distinct carbon sources. RpoS mutants allow life in the acidic and sucrose-rich apoplastic compartment, underscoring the role of genetic variation in bacterial adaptation to colonize plants.
Project description:The mechanisms whereby enteric pathogens and microbes induce systemic antibody responses remain obscure. In contrast to accepted models, we show that commensal microbes have a dramatic impact on the bone marrow (BM) plasma cell pool. Unlike standard vendor mice, in mice reared in our colony the majority of long-lived BM plasma cells secreted IgA antibodies. Exposing vendor mice to a unique microflora or Helicobacter sp. led to the generation of IgA-secreting BM cells, while also inducing increases in serum IgA antibodies enriched for binding to several commensal bacterial taxa. Moreover, BM IgA-secreting plasma cells exhibited a common clonal ancestry with intestinal IgA+ plasma cells, and both populations possessed unique gene expression signatures compared to other long-lived BM plasma cells. We conclude that commensal microbes overtly influence the BM plasma cell pool, and suggest that select commensal microbes can facilitate the induction of systemic humoral immunity.
Project description:Tongue squamous cell carcinoma (TSCC) varies in characteristics even in early stages and is mainly classified into three subtypes, which are superficial, exophytic and endophytic types, based on a macroscopic appearance of tumor growth.Of these subtypes, endophytic tumor has a poorer prognosis because of its invasive feature and higher frequency to have metastasis. To understand a molecular mechanism of endophytic subtype and identify biomarkers, we performed comprehensive microarray analysis for mRNAs from clinical biopsy sampleswhich were classified into subtypes and found overexpression of parvin-beta (PARVB) gene significantly related to endophytic type. PARVB is known to play a critical role in actin reorganization and focal adhesions. Knocking down PARVB expression in vitrocaused apparent decreases in cell migration and wound healing, implying that PARVB has a crucial role in cellular motility. Moreover, metastasis-free survival was significantly lowered in patients with higher PARVB expression. Therefore overexpression of PARVB is a candidate biomarker for endophytic tumor and metastasis and may be clinically applicable for decision making of an adjuvant therapy in TSCC. Twenty seven OCT embedded tissues were used to extract total RNA. Then RNAs were amplified, biotinylated, fragmented and hybridized on GeneChip Human Genome U133 plus 2.0 arrays.
Project description:MicroRNAs (miRNAs) are a type of small non-coding RNAs, which play important roles in plant growth, development and stress responses. Tea (Camellia sinensis) prepared from tea tree is the oldest and most popular nonalcoholic beverages in the world, and has large economic, medicinal and cultural significance. Nevertheless, there are a few studies on the miRNAs and their functions in Camellia sinensis. We sequenced 9 small RNA libraries and 9 RNA-Seq libraries from roots, leaves and flowers tissues. Through comprehensive computational analyses of 9 small RNA profiles, we identified 200 conserved miRNAs of which 138 have not been reported, and 56 novel miRNAs with 33 have not been reported. Nearly, two thousands genes have significantly different expression levels in tissues. In order to identify targets of miRNAs, we sequenced two degradome profiles from leaves and roots, respectively. Totally, more than 3,000 putative targets of conserved miRNAs were identified in both degradome profiles by using the SeqTar algorithm. These results clearly enhanced our understanding about small RNA guided gene regulations in Camellia sinensis.
Project description:MicroRNAs (miRNAs) are a type of small non-coding RNAs, which play important roles in plant growth, development and stress responses. Tea (Camellia sinensis) prepared from tea tree is the oldest and most popular nonalcoholic beverages in the world, and has large economic, medicinal and cultural significance. Nevertheless, there are a few studies on the miRNAs and their functions in Camellia sinensis. We sequenced 9 small RNA libraries and 9 RNA-Seq libraries from roots, leaves and flowers tissues. Through comprehensive computational analyses of 9 small RNA profiles, we identified 200 conserved miRNAs of which 138 have not been reported, and 56 novel miRNAs with 33 have not been reported. Nearly, two thousands genes have significantly different expression levels in tissues. In order to identify targets of miRNAs, we sequenced two degradome profiles from leaves and roots, respectively. Totally, more than 3,000 putative targets of conserved miRNAs were identified in both degradome profiles by using the SeqTar algorithm. These results clearly enhanced our understanding about small RNA guided gene regulations in Camellia sinensis.
Project description:MicroRNAs (miRNAs) are a type of small non-coding RNAs, which play important roles in plant growth, development and stress responses. Tea (Camellia sinensis) prepared from tea tree is the oldest and most popular nonalcoholic beverages in the world, and has large economic, medicinal and cultural significance. Nevertheless, there are a few studies on the miRNAs and their functions in Camellia sinensis. We sequenced 9 small RNA libraries and 9 RNA-Seq libraries from roots, leaves and flowers tissues. Through comprehensive computational analyses of 9 small RNA profiles, we identified 200 conserved miRNAs of which 138 have not been reported, and 56 novel miRNAs with 33 have not been reported. Nearly, two thousands genes have significantly different expression levels in tissues. In order to identify targets of miRNAs, we sequenced two degradome profiles from leaves and roots, respectively. Totally, more than 3,000 putative targets of conserved miRNAs were identified in both degradome profiles by using the SeqTar algorithm. These results clearly enhanced our understanding about small RNA guided gene regulations in Camellia sinensis.
Project description:Microarray analysis is being performed with cultivated selections using custom designed arrays. Custom designed arrays include the design of microarray probes using clearly described bioinformatics methods. We have used the sequence data related to fungal resistance from Camellia Sp. and Arabidopsis thaliana available in the biological databases, to design these arrays. Results of this work will help us to understand the genes expressed during the blister blight and grey blight infection. Camellia sinensis 4x44k Microarray designed by Genotypic Technology Private Limited. (AMADID:043117)