Project description:For the establishment of synthetic microbial communities comprising complementary auxotrophic strains, transport processes for common goods are extremely important. Most auxotrophic strains reach wild type level growth with external supplementation of the required metabolite. One exception was the tryptophan auxotrophic strain Corynebacterium glutamicum ΔTRP ΔtrpP, which grew about 35% slower than the wild type in supplemented minimal medium. Corynebacterium glutamicum ΔTRP ΔtrpP lacks the whole tryptophan biosynthesis cluster (TRP) as well as the putative tryptophan transporter TrpP. We wanted to explore the role of TrpP in tryptophan transport or synthesis and to unravel the cause for the growth limitation of the auxotrophic strain.
Project description:Mycothiol (AcCys-GlcN-Ins, MSH) is the major thiol-redox buffer in Actinomycetes, including Mycobacterium and Corynebacterium species. Protein S-mycothiolation controls the activities of several redox enzymes that function in detoxification of ROS and methionine sulfoxides, including the thiol peroxidase Tpx, the mycothiol peroxidase Mpx and the methionine sulfoxide reductase MsrA. Here we investigated the level of protein S-mycothiolation in Corynebacterium diphtheriae DSM43989 under oxidative stress as well as its NaOCl stress response.
Project description:To identify genes which are differentially expressed in Corynebacterium glutamicum in the cg2699 deletion strain, we performed DNA microarray analyses of C. glutamicum Δcg2699 compared to the WT.
Project description:To identify genes which are differentially expressed in Corynebacterium glutamicum in the cg2460 deletion strain, we performed DNA microarray analyses of C. glutamicum Δcg2460 compared to the WT.
Project description:Corynebacterium glutamicum strain ATCC 21831 is a producer of L-arginine that was created by random mutagenesis. It is resistant to the arginine structural analogue canavanine. In order to identify potential bottlenecks in the biosynthetic pathway that leads to this industrially important amino acid, relative metabolite abundances of biosynthetic intermediates were determined in comparison to the type strain ATCC 13032. An extract of U13C-labeled biomass was used as internal standard, to correct for different ionization efficiencies. Metabolites were identified using the ALLocator web platform.