Project description:We present spatially resolved high-spatial-resolution genome-wide co-mapping of epigenome and transcriptome by simultaneously profiling of chromatin accessibility and gene expression (spatial-ATAC-RNA-seq), as well as histone modification and gene expression (spatial-CUT&Tag-RNA-seq) on the same tissue section at cellular level by combining the microfluidic deterministic barcoding strategy in DBiT-seq and the chemistry used in ATAC-seq/CUT&Tag.
Project description:We present spatially resolved high-spatial-resolution genome-wide co-mapping of epigenome and transcriptome by simultaneously profiling of chromatin accessibility and gene expression (spatial-ATAC-RNA-seq), as well as histone modification and gene expression (spatial-CUT&Tag-RNA-seq) on the same tissue section at cellular level by combining the microfluidic deterministic barcoding strategy in DBiT-seq and the chemistry used in ATAC-seq/CUT&Tag.
Project description:We present spatially resolved high-spatial-resolution genome-wide co-mapping of epigenome and transcriptome by simultaneously profiling of chromatin accessibility and gene expression (spatial-ATAC-RNA-seq), as well as histone modification and gene expression (spatial-CUT&Tag-RNA-seq) on the same tissue section at cellular level by combining the microfluidic deterministic barcoding strategy in DBiT-seq and the chemistry used in ATAC-seq/CUT&Tag.