Project description:In our previous study, we found that WBC miRNA may serve as ADHD prediction biomarkers. Therefore, we wonder whether WBC gene expression profile could also serve as ADHD biomarkers. We enrolled ADHD and healthy control subjects, followed by collecting RNA samples from total WBC.
Project description:In our previous study, we found that WBC miRNA may serve as ADHD prediction biomarkers. Therefore, we wonder whether these biomarkers miRNAs may regulate the neuron cells. We had Human Cortical Neuronal cells (HCN-2) transfected with miR-126-5p, miR-140-3p or Scrambled control mimics, followed by observing the differentiation of HCN-2 cells. We found that miR-126-5p and miR-140-3p promoted HCN-2 differentiation.
Project description:ADHD is the most common neurobehavioral disorder in school-aged children. In addition to genetic factors, environmental influences or gene x environmental interactions also play an important role in ADHD. One example of a well studied environmental risk factor for ADHD is exposure to polychlorinated biphenyls (PCBs). In this study, we investigated whether the well-established genetic model of ADHD based on the Spontaneously Hypertensive Rat (SHR) and a well established PCB-based model of ADHD exhibited similar molecular changes in brain circuits involved in ADHD. The brains from 28 male rats (8 SHR, 8 Sprague-Dawley (SD) controls, 8 Wistar-Kyoto (WKY) controls, and 4 PCB-exposed SD rats) were harvested at postnatal day 55-65 and RNA was isolated from six brain regions of interest. The RNA was analyzed for differences in expression of a set of 308 probe sets interrogating 218 unique genes considered highly relevant to ADHD or epigenetic gene regulation using the Rat RAE 230 2.0 GeneChip (Affymetrix). Selected observations were confirmed by real time quantitative RT-PCR. The results show that the expression levels of genes Gnal, COMT, Adrbk1, Ntrk2, Hk1, Syt11 and Csnk1a1 were altered in both the SHR rats and the PCB-exposed SD rats. Arrb2, Stx12, Aqp6, Syt1, Ddc and Pgk1 expression levels were changed only in the PCB-exposed SD rats. Genes with altered expression only in the SHRs included Oprm1, Calcyon, Calmodulin, Lhx1 and Hes6.The epigenetic genes Crebbp, Mecp2 and Hdac5 are significantly altered in both models. The data provide strong evidence that genes and environment can affect different set of genes in two different models of ADHD and yet result in the similar disease-like symptoms. The brains from 28 male rats (8 SHR, 8 Sprague-Dawley (SD) controls, 8 Wistar-Kyoto (WKY) controls, and 4 PCB-exposed SD rats) were harvested at postnatal day 55-65 and RNA was isolated from six brain regions of interest. The RNA was analyzed for differences in expression of a set of 308 probe sets interrogating 218 unique genes considered highly relevant to ADHD or epigenetic gene regulation using the Rat RAE 230 2.0 GeneChip (Affymetrix). Selected observations were confirmed by real time quantitative RT-PCR.
Project description:Attention deficit hyperactivity disorder (ADHD) is a common psychiatric condition of children with a prevalence of 5-10% worldwide. Up to 30% of adults with a history of childhood ADHD maintain symptoms in later life; these adult ADHD patients are severely impaired in social and professional life due to persistence of ADHD core symptoms like impulsivity, attention deficit and hyperactivity as well as frequently observed co-morbidities like alcohol and drug abuse, major depression, bipolar and personality disorders. Pharmaceutical treatment options include methylphenidate (MPH), which is amongst others an inhibitor of the dopamine transporter and therefore increases dopamine levels in the brain. However, not all ADHD patients are MPH responders with clinical features to distinguish responders and non-responders being not at hand so far. Likewise, neurobiological reasons for drug response are still elusive. Here, we examined the global transcriptional response of MPH on lymphoblastoid cell lines (LCLs) derived from ADHD patients and unaffected controls.
Project description:ADHD is the most common neurobehavioral disorder in school-aged children. In addition to genetic factors, environmental influences or gene x environmental interactions also play an important role in ADHD. One example of a well studied environmental risk factor for ADHD is exposure to polychlorinated biphenyls (PCBs). In this study, we investigated whether the well-established genetic model of ADHD based on the Spontaneously Hypertensive Rat (SHR) and a well established PCB-based model of ADHD exhibited similar molecular changes in brain circuits involved in ADHD. The brains from 28 male rats (8 SHR, 8 Sprague-Dawley (SD) controls, 8 Wistar-Kyoto (WKY) controls, and 4 PCB-exposed SD rats) were harvested at postnatal day 55-65 and RNA was isolated from six brain regions of interest. The RNA was analyzed for differences in expression of a set of 308 probe sets interrogating 218 unique genes considered highly relevant to ADHD or epigenetic gene regulation using the Rat RAE 230 2.0 GeneChip (Affymetrix). Selected observations were confirmed by real time quantitative RT-PCR. The results show that the expression levels of genes Gnal, COMT, Adrbk1, Ntrk2, Hk1, Syt11 and Csnk1a1 were altered in both the SHR rats and the PCB-exposed SD rats. Arrb2, Stx12, Aqp6, Syt1, Ddc and Pgk1 expression levels were changed only in the PCB-exposed SD rats. Genes with altered expression only in the SHRs included Oprm1, Calcyon, Calmodulin, Lhx1 and Hes6.The epigenetic genes Crebbp, Mecp2 and Hdac5 are significantly altered in both models. The data provide strong evidence that genes and environment can affect different set of genes in two different models of ADHD and yet result in the similar disease-like symptoms.
Project description:Attention deficit hyperactivity disorder (ADHD) is a common psychiatric condition of children with a prevalence of 5-10% worldwide. Up to 30% of adults with a history of childhood ADHD maintain symptoms in later life; these adult ADHD patients are severely impaired in social and professional life due to persistence of ADHD core symptoms like impulsivity, attention deficit and hyperactivity as well as frequently observed co-morbidities like alcohol and drug abuse, major depression, bipolar and personality disorders. Pharmaceutical treatment options include methylphenidate (MPH), which is amongst others an inhibitor of the dopamine transporter and therefore increases dopamine levels in the brain. However, not all ADHD patients are MPH responders with clinical features to distinguish responders and non-responders being not at hand so far. Likewise, neurobiological reasons for drug response are still elusive.