Project description:Silver nanoparticles (NPs) are extensively used due to their antimicrobial activity and, therefore, their input into the ecosystem will increase. Silver can be bioaccumulated by low trophic level organisms and, then, incorporated into the food chain, reaching high level predators. The objectives of this study were to test the acute toxicity of N-vynil-2-pirrolidone/polyethylenimine (PVP-PEI) coated Ag NPs of 5 nm to brine shrimp (Artemia sp) larvae and to assess bioaccumulation and effects of silver transferred by the diet. For the later, brine shrimps were exposed to two different concentrations of Ag NPs, 100 ng/L as an environmentally relevant concentration and 100 µg/L as a likely effective concentration, in parallel with an unexposed control group and, then, used to feed zebrafish during 21 days in order to simulate two trophic levels of a simplified food web. For brine shrimp larvae, EC50 values ranged from 7.39 mg Ag/L (48 h post hatch larvae (hph) exposed for 48 h) to 19.63 mg Ag/L (24 hph larvae exposed for 24 h. Silver accumulation was measured in brine shrimps exposed to 0.1 and 1 mg/L of Ag NPs for 24 h. In zebrafish fed with brine shrimps exposed to Ag NPs, intestine showed higher metal accumulation than liver, although both organs presented the same pattern of dose and time-dependent metal accumulation as revealed by autometallography. Feeding of zebrafish for 3 days with brine shrimps exposed to 100 ng/L of Ag NPs was enough to impair fish health as reflected by the significant reduction of the lysosomal membrane stability and the presence of several histopathological conditions in the liver. Overall, results showed that Ag NPs were able to exert toxic effects on zebrafish through dietary exposure, even at an environmentally relevant concentration, which should act as concern of the need of studies in further detail about real impact of nanomaterials in the environment.
2017-03-21 | GSE90457 | GEO
Project description:Transcriptome of sexual and asexual Artemia brine shrimp
Project description:Birds have a sex chromosome system in which females are heterogametic (ZW) and males are homogametic (ZZ). The differentiation of avian sex chromosomes from ancestral autosomes entailed the loss of most genes from the W chromosome during evolution. However, to what extent mechanisms evolved that counterbalance the consequences of this extensive gene dosage reduction in female birds has remained unclear. Here we report functional in vivo and evolutionary analyses of a Z-chromosome-linked microRNA (miR-2954) with strongly male-biased expression that was previously proposed to play a key role in sex chromosome dosage compensation1. We knocked out miR-2954 in chicken, which resulted in early embryonic lethality of homozygous knockout males, likely due to the highly specific upregulation of dosage-sensitive Z-linked target genes of miR-2954. Our evolutionary gene expression analyses further revealed that these dosage-sensitive target genes have become upregulated on the single Z in female birds during evolution. Altogether, our work unveils a scenario where evolutionary pressures on females following W gene loss led to the evolution of transcriptional upregulation of dosage-sensitive genes on the Z not only in female but also in male birds. The resulting overabundance of transcripts in males resulting from the combined activity of two dosage-sensitive Z gene copies was in turn offset by the emergence of a highly targeted miR-2954-mediated transcript degradation mechanism during avian evolution. Our findings demonstrate that birds have evolved a unique sex chromosome dosage compensation system in which a microRNA has become essential for male survival.
Project description:Gene dosage imbalance of heteromorphic sex chromosomes (XY or ZW) exists between the sexes, and with the autosomes. Mammalian X chromosome inactivation was long thought to imply a critical need for dosage compensation in vertebrates. However, mRNA abundance measurements that demonstrated sex chromosome transcripts are neither balanced between the sexes or with autosomes in monotreme mammals or birds brought sex chromosome dosage compensation into question. This study examines transcriptomic and proteomic levels of dosage compensation in platypus and chicken compared to mouse, a model eutherian species. We analyzed mRNA and protein levels in heart and liver tissues of chicken, mouse and platypus.
Project description:Whereas in ovo exposure of genetically male (ZZ) chicken embryos to exogenous estrogens temporarily feminizes gonads at the time of hatching, the morphologically ovarian ZZ-gonads (FemZZs for feminized ZZ gonads) are masculinized back to testes within one year. To identify the feminization-resistant “memory” of genetic male sex, FemZZs showing varying degrees of feminization were subjected to transcriptomic, DNA methylome, and immunofluorescence analyses. Protein-coding genes were classified based on their relative mRNA expression across normal ZZ-testes, genetically female (ZW) ovaries, and FemZZs. We identified a group of 25 genes that were strongly expressed in both ZZ-testes and FemZZs but dramatically suppressed in ZW-ovaries. Interestingly, 84% (21/25) of these feminization-resistant testicular marker genes, including the DMRT1 master masculinizing gene, were located in chromosome Z. Expression of representative marker genes of germline cells (e.g., DAZL or DDX4/VASA) was stronger in FemZZs than normal ZZ-testes or ZW-ovaries. We also identified 231 repetitive sequences (RSs) that were strongly expressed in both ZZ-testes and FemZZs, but these RSs were not enriched in chromosome Z. Although 94% (165/176) of RSs exclusively expressed in ZW-ovaries were located in chromosome W, no feminization-inducible RS was detected in FemZZs. DNA methylome analysis distinguished FemZZs from normal ZZ- and ZW-gonads. Immunofluorescence analysis of FemZZ gonads revealed expression of DMRT1 protein in medullary SOX9+ somatic cells and apparent germline cell populations in both medulla and cortex. Taken together, our study provides evidence that both somatic and germline cell populations in morphologically feminized FemZZs maintain significant transcriptomic and epigenetic memories of genetic sex.
2020-10-31 | GSE160494 | GEO
Project description:The pistachio genomes provide insights into nut tree domestication and ZW sex chromosome evolution
Project description:Gene expression was examined in genetic females that were sex-reversed to be phenotypically male compared to normal hybrid males We used microarrays to test expression in the gonad of sex-reversed males (ZW) compared to normal males (ZZ) Keywords: treatment
Project description:Gene expression was examined in genetic males that were sex-reversed to be phenotypically female compared to normal hybrid females We used microarrays to test expression in the gonad of sex-reversed females (ZZ) compared to normal females (ZW) Keywords: treatment
2007-11-07 | GSE9504 | GEO
Project description:Humulus lupulus sex chromosome evolution