Project description:Our aims in this study were: 1) to identify the miRNAs of the bumble bees Bombus terrestris and B. impatiens; 2) to compare the total numbers of miRNAs between both bumble bee species and between them and the honey bee, Apis mellifera; and 3) to test whether the sequences and expression patterns of miRNAs were conserved between species. To investigate each of these aims we used miRNA-seq (deep sequencing of miRNA-enriched libraries) in B. terrestris, and bioinformatics prediction programs to identify miRNAs in both Bombus species. We identified 131 miRNAs in B. terrestris, and 114 in B. impatiens; of these, 17 were new miRNAs that had not previously been sequenced in any species. We found a striking level of difference in the miRNAs present between Bombus and A. mellifera, with 103 miRNAs in A. mellifera not being present in the genomes of the two bumble bees. miRNA profiles of Bombus terrestris at two developmental stages in larvae. This submission represents 'Bombus terrestris' component of study.
Project description:Bumblebees (Hymenoptera: Apidae) are important pollinating insects that play pivotal roles in crop production and natural ecosystem services. To achieve a comprehensive profile of accessible chromatin regions and provide clues for all possible regulatory elements in the bumblebee genome, we did ATAC-seq for Bombus terrestris samples derived from its four developmental stages: egg, larva, pupa, and adult, respectively. The sequencing reads of ATAC-seq were mapped to B. terrestris reference genome, and its accessible chromatin regions were identified and characterized using bioinformatic methods. Our study will provide important resources not only for uncovering regulatory elements in the bumblebee genome, but also for expanding our understanding of bumblebee biology.
Project description:Our aims in this study were: 1) to identify the miRNAs of the bumble bees Bombus terrestris and B. impatiens; 2) to compare the total numbers of miRNAs between both bumble bee species and between them and the honey bee, Apis mellifera; and 3) to test whether the sequences and expression patterns of miRNAs were conserved between species. To investigate each of these aims we used miRNA-seq (deep sequencing of miRNA-enriched libraries) in B. terrestris, and bioinformatics prediction programs to identify miRNAs in both Bombus species. We identified 131 miRNAs in B. terrestris, and 114 in B. impatiens; of these, 17 were new miRNAs that had not previously been sequenced in any species. We found a striking level of difference in the miRNAs present between Bombus and A. mellifera, with 103 miRNAs in A. mellifera not being present in the genomes of the two bumble bees.
Project description:We use high-thoughput RNA sequencing to investigate the stressors experienced by the vulnerable Bombus terricola near agricultural areas.
Project description:We perform a quantitative RNA-seq analysis of embryo sacs, comparator ovules with the embryo sacs removed, mature pollen, and seedlings to assist the identification of gametophyte functions in maize. Expression levels were determined for annotated genes in both gametophytes, and novel transcripts were identified from de novo assembly of RNA-seq reads. RNA-seq was performed on four tissue types: nine-day old, above-ground seedling (S); mature pollen (MP); embryo-sac-enriched samples with some remaining nucellar cells (ES); and ovules with embryo sacs removed (Ov).
Project description:Using the Illumina HiSeq 2000 platform, 39,598; 32,403and 42,208 genes were identified in flower buds of B. carinata cv.W29, B. napus cv. Zhongshuang 11 and their hybrids, respectively. The differentially expressed genes (DEGs) were significantly enriched in pollen wall assembly, pollen exine formation, pollen development, pollen tube growth, pollination, gene transcription, macromolecule methylation and translation, which might be associated with impaired fertility in the F1 hybrid. These results will shed light on the mechanisms underlying the low fertility of the interspecific hybrids and expand our knowledge of interspecific hybridization.
Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:There are multiple types of small RNAs that may affect rice pollen’s development. To investigate the small RNA populations’ change during rice pollen development, 13-40 nt RNA were extracted from uninucleate microspores (UNM) and bicellular pollen (BCP) for high throughput sequencing. Together with our laboratory’s previous published rice tricellular pollen (TCP) small RNA sequencing data (GSM722128), sharp increase of tRNA fragments (tRFs) in BCP stage and a slightly decreased tRFs in TCP were found. Among which, new lengths of tRFs were also discovered. Our work accomplished the knowledge about tRFs in rice pollen development.