Project description:We report the ChIP-seq of several histone modification markers for BS cells and H3K36me3 ChIP-seq for M cells, we found that BS-specific gene module trend to be regulated by histone acetylation.
Project description:Comparison of methylome of HEK293-CT cells and HEK293 cells stably over-expressing the BAHD1 gene (HEK-BAHD1) We used BS-seq to identify genomic regions differentially methylated upon overexpression of the chromatin repressor BAHD1 in HEK293 cells.
Project description:Genome-wide maps of chromatin state (H3K4me3, H3K9me3, H3K27me3, H3K36me3, H4K20me3) in pluripotent and lineage-committed cells We report the application of single-molecule-based sequencing technology for high-throughput profiling of histone modifications in mammalian cells. By obtaining over four billion bases of sequence from chromatin immunoprecipitated DNA, we generated genome-wide chromatin-state maps of mouse embryonic stem cells, neural progenitor cells and embryonic fibroblasts. We find that lysine 4 and lysine 27 trimethylation effectively discriminates genes that are expressed, poised for expression, or stably repressed, and therefore reflect cell state and lineage potential. Lysine 36 trimethylation marks primary coding and non-coding transcripts, facilitating gene annotation. Trimethylation of lysine 9 and lysine 20 is detected at satellite, telomeric and active long-terminal repeats, and can spread into proximal unique sequences. Lysine 4 and lysine 9 trimethylation marks imprinting control regions. Finally, we show that chromatin state can be read in an allele-specific manner by using single nucleotide polymorphisms. This study provides a framework for the application of comprehensive chromatin profiling towards characterization of diverse mammalian cell populations. Histone H3 or H4 tri-methylation ChIP-Seq in singlicate from murine embryonic stem (ES) cells, ES-derived neural precursor cells, and embryonic fibroblasts.
Project description:We generated genome-wide chromatin state and RNA Polymerase II binding maps in mouse erythroid cells by ChIP-Seq. Examination of 4 different histone modifications (H3K4me3, H3K4me1, H3K27me3, H3K27ac) and RNA Polymerase II (RNAP2) binding in mouse erythroid cells (Ter119+).