Project description:The ciliary body is required for the maintenance of intraocular pressure and immunity as well as vision accommodation. We report a comprehensive cell atlas of human ciliary body from single-cell RNA sequencing (scRNAseq)
Project description:Single cell RNA-seq was performed on dissected murine ciliary body samples, and the resulted sequencing data was used to assess the various cell types present within the dissected tissue
Project description:Aging is a multifactorial process with significant functional alterations of the human body including endocrinal systems which control the whole-body physiology and metabolism. In this vein, aging-induced decline of endocrine function are associated with multiple physiological and metabolic diseases. However, aging-associated molecular shifts in the pituitary gland, the central organ of the endocrine system, have not been dissected systemically. In this study, we conducted single-cell transcriptomic analysis of the anterior pituitary gland by comparing old and young male mice. Single-cell transcriptomics not only increased the resolution for clustering of various cell types in the pituitary gland, but also enabled detailed analysis of differential expression and intercellular communication caused by aging. In summary, our study constructed the first single-cell transcriptomic atlas of pituitary aging and identified associated features of in a single-cell level, providing resources to develop novel potential therapeutic targets for aging-associated endocrine dysfunction.
Project description:The iris is a fine structure that controls the amount of light that enters the eye. The ciliary body controls the shape of the lens and produces aqueous humor. The retinal pigment epithelium and choroid (RPE/choroid) are essential in supporting the retina and absorbing light energy that enters the eye. Proteins were extracted from iris, ciliary body, and RPE/choroid tissues of eyes from five individuals and fractionated using SDS-PAGE. After in-gel digestion, peptides were analyzed using LC-MS/MS on an Orbitrap Elite mass spectrometer. In iris, ciliary body, and RPE/choroid, we identified 2,959, 2,867, and 2,755 non-redundant proteins with protein false positive rate <1%. There were 43 unambiguous protein isoforms identified in iris, ciliary body, and RPE/choroid. Four “missing proteins” were found in ciliary body. The MS proteome database of the human iris, ciliary body, and RPE/choroid may serve as a valuable resource for future investigations of the eye in health and disease. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD001424.
Project description:The iris is a fine structure that controls the amount of light that enters the eye. The ciliary body controls the shape of the lens and produces aqueous humor. The retinal pigment epithelium and choroid (RPE/choroid) are essential in supporting the retina and absorbing light energy that enters the eye. Proteins were extracted from iris, ciliary body, and RPE/choroid tissues of eyes from five individuals and fractionated using SDS-PAGE. After in-gel digestion, peptides were analyzed using LC-MS/MS on an Orbitrap Elite mass spectrometer. In iris, ciliary body, and RPE/choroid, we identified 2,959, 2,867, and 2,755 non-redundant proteins with protein false positive rate <1%. There were 43 unambiguous protein isoforms identified in iris, ciliary body, and RPE/choroid. Four “missing proteins” were found in ciliary body. The MS proteome database of the human iris, ciliary body, and RPE/choroid may serve as a valuable resource for future investigations of the eye in health and disease. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD001424.