Project description:Organ abscission is a general activity found in plants and its regulation is an important agronomical concern because the trait directly affects the harvesting efficiency of fruits or grains and the yields. Generally, abscission takes place at a specialized cell layer, which is called abscission zones (AZs). So far, investigations on organ abscission have been focused mainly on the cell activities during organ detachment. By contrast, little attention has been paid to the properties of AZ cells at the pre-abscission stage. The pre-abscission cells are at a turning point for initiating abscission; until an abscission initiating signal is provided, the AZ cells keep their physiological state, while once the signal occurs, the cells immediately change their state into the onset of abscission. In this study, to screen the genes involved in the regulation of abscission at the pre-abscission state, we investigated the gene expression profiles of tomato flower pedicels at anthesis. The screening revealed many genes that characterize cell identities in each pedicel region. We harvested tomato flower pedicels at the anthesis stage and divided them into three parts: the abscission zone (AZ) and the flanking proximal- (Prox) and distal- (Dis) regions. RNA was isolated and subjected to DNA microarray analyses. Experiments were performed three times with independently prepared samples.
Project description:To extend our previous knowledge from our gene expression studies on Flower pedicel Abscission zone using Affymetrix microarray chip we have employed whole transcriptome analysis by NGS as a discovery platform to identify and add the transcripts to pre-existing database. We designed the Customized AZ Microarray chip with the transcripts obtained from NGS (includes novel transcripts), pre existing Agilent probes, and some additional transcripts from previous databases. The flower pedicel AZ tissue and non abscission(NAZ) pedicel tissues was sampled at six time points (0, 4, 8, 12, 16 and 20 h), following flower removal, and analyzed for their gene expression profiles using the customized AZ microarray.
Project description:The aim of this study is to assess the global transcriptome changes during the shedding of the flower, which normally takes around 6 or 7 days. We selected four time points (from day 0 to day 6) and three different tissues within the flower bud; distal, abscission and proximal zones with three biological replicates. RNA extraction, library prep and paired end sequencing was performed. Our special interest is try to describe the changes in the abscission zone and the two adjacent tissues in order to get a whole picture of the shedding process. We performed a de novo assembly by Trinity and detected the transcripts and expression changes across spatial and temporal comparisons.
Project description:The receptor-like protein kinases encoded by HAESA (HAE) and HAESA-LIKE 2 (HSL2) are essential for floral organ abscission in Arabidopsis thaliana and the double hae hsl2 mutant fails to abscise. Expression of HAE and HSL2 is specific to Abscission Zone (AZ) cells and is higher in stage 15 flowers than in earlier developmental stages. By stage 16 floral organs have begun to abscise, suggesting that HAE HSL2 are most active in stage 15 flowers. Samples were enriched for AZ RNA by isolating RNA from flower receptacles, the region from the base of the flower to slightly above the base of attachment of the sepals, petals, and stamen. RNA-seq was then used to analyze and compare the transcriptomes of wild type and hae-3 hsl2-3 mutants. 2034 genes were differentially expressed with a False Discovery Rate adjusted p < 0.05, of which 349 genes 2 fold or greater change. Of these 349, 277 were lower in the mutant and 72 were higher. Differentially expressed genes with lower expression were enriched for hydrolytic enzymes, cell-wall modifying enzymes, and defense related genes. This suggests that HAE HSL2 signaling regulates gene expression of enzymes necessary for abscission.
Project description:Transcription profiling of Brassica rapa, Brassica oleracea and Brassica napus I and II The nuclear genomes of the resynthesised B. napus lines should be identical but, as one (B. napus I) involved a cross of B. oleracea onto B. rapa, and the other (B. napus II) involved a cross of B rapa onto B. oleracea, they differ in cytoplasm, and hence contain different chloroplast and mitochondrial genomes.
Project description:To extend our previous knowledge from our gene expression studies on Flower pedicel Abscission zone using Affymetrix microarray chip we have employed whole transcriptome analysis by NGS as a discovery platform to identify and add the transcripts to pre-existing database. We designed the Customized AZ Microarray chip with the transcripts obtained from NGS (includes novel transcripts), pre existing Agilent probes, and some additional transcripts from previous databases. we developed transgenic lines by antisense silenciencing the genes, which are expressed in the AZ to study the functional role in abscission process. In the current stuty we silenced TPRP gene by antisense technology under abscisson promoter (TAPG::antsisense TPRP). The flower pedicel AZ tissue tissue was sampled at six time points (0, 4, 8, 12, 16 and 20 h), following flower removal, and analyzed for their gene expression profiles using the customized AZ microarray.
Project description:To extend our previous knowledge from our gene expression studies on Flower pedicel Abscission zone using Affymetrix microarray chip we have employed whole transcriptome analysis by NGS as a discovery platform to identify and add the transcripts to pre-existing database. We designed the Customized AZ Microarray chip with the transcripts obtained from NGS (includes novel transcripts), pre existing Agilent probes, and some additional transcripts from previous databases. We developed transgenic lines by antisense silencing the genes, which are expressed in the AZ to study the functional role in abscission process. In the current stuty we silenced KD gene by antisense technology under abscisson promoter (TAPG::antsisense KD). The flower pedicel AZ tissue tissue was sampled at six time points (0, 4, 8, 12, 16 and 20 h), following flower removal, and analyzed for their gene expression profiles using the customized AZ microarray.
Project description:The receptor-like protein kinases encoded by HAESA (HAE) and HAESA-LIKE 2 (HSL2) are essential for floral organ abscission in Arabidopsis thaliana and the double hae hsl2 mutant fails to abscise. Expression of HAE and HSL2 is specific to Abscission Zone (AZ) cells and is higher in stage 15 flowers than in earlier developmental stages. By stage 16 floral organs have begun to abscise, suggesting that HAE HSL2 are most active in stage 15 flowers. Samples were enriched for AZ RNA by isolating RNA from flower receptacles, the region from the base of the flower to slightly above the base of attachment of the sepals, petals, and stamen. RNA-seq was then used to analyze and compare the transcriptomes of wild type and hae-3 hsl2-3 mutants. 2034 genes were differentially expressed with a False Discovery Rate adjusted p < 0.05, of which 349 genes 2 fold or greater change. Of these 349, 277 were lower in the mutant and 72 were higher. Differentially expressed genes with lower expression were enriched for hydrolytic enzymes, cell-wall modifying enzymes, and defense related genes. This suggests that HAE HSL2 signaling regulates gene expression of enzymes necessary for abscission. 6 samples were sequenced, 3 biological replicates of Col-0 wild type and 3 biological replicates of the hae-3 hsl2-3 double mutant. Samples were barcoded and all 6 samples multiplexed and sequenced on 3 lanes, each lane on a separate flow cell, of an Illumina HiSeq 2000.