Project description:Soil water repellency (SWR) (i.e. soil hydrophobicity or decreased soil wettability) is a major cause of global soil degradation and a key agricultural concern. This metabolomics data will support the larger effort measuring soil water repellency and soil aggregate formation caused by microbial community composition through a combination of the standard drop penetration test, transmission electron microscopy characterization and physico-chemical analyses of soil aggregates at 6 timepoints. Model soils created from clay/sand mixtures as described in Kallenbach et al. (2016, Nature Communications) with sterile, ground pine litter as a carbon/nitrogen source were inoculated with 15 different microbial communities known to have significantly different compositions based on 16S rRNA sequencing. This data will allow assessment of the direct influence of microbial community composition on soil water repellency and soil aggregate stability, which are main causes of soil degradation.
The work (proposal:https://doi.org/10.46936/10.25585/60001346) conducted by the U.S. Department of Energy Joint Genome Institute (https://ror.org/04xm1d337), a DOE Office of Science User Facility, is supported by the Office of Science of the U.S. Department of Energy operated under Contract No. DE-AC02-05CH11231.
Project description:Evaluation of different strategies to interpret metaproteomics data acquired on soil samples from a floodplain along the Seine River (France) incorporating sample-specific metagenomics data, soil genome catalogue database, and generic sequence database.
Project description:Tissue-specific methylation patterns suggest a role for CpG island methylation in differentiation and cell-type-specific gene regulation. We have profiled CpG island methylation in different cells of the immune cell lineage to investigate this role. MBD-affinity purification combined with next generation sequencing was used to analyse CpG island methylation in dendritic cells, B cells, Th1, Th2 and naïve T cells. ChIP-seq was carried out to determine RNA polymerase II binding sites in these cell types and this was compared to the methylation profiles obtained. This data is part of a pre-publication release. For information on the proper use of pre-publication data shared by the Wellcome Trust Sanger Institute (including details of any publication moratoria), please see http://www.sanger.ac.uk/datasharing/ Abstract: We have profiled CpG island methylation in various immune system cell types and related this to gene expression in these cells.
Project description:The experiment at three long-term agricultural experimental stations (namely the N, M and S sites) across northeast to southeast China was setup and operated by the Institute of Soil Science, Chinese Academy of Sciences. This experiment belongs to an integrated project (The Soil Reciprocal Transplant Experiment, SRTE) which serves as a platform for a number of studies evaluating climate and cropping effects on soil microbial diversity and its agro-ecosystem functioning. Soil transplant serves as a proxy to simulate climate change in realistic climate regimes. Here, we assessed the effects of soil type, soil transplant and landuse changes on soil microbial communities, which are key drivers in Earth’s biogeochemical cycles.
Project description:Affymetrix single nucleotide polymorphism (SNP) array data were collected to study genome-wide patterns of genomic variation across a broad geographical range of Island Southeast Asian populations. This region has experienced an extremely complex admixture history. Initially settled ~50,000 years ago, Island Southeast Asia has since been the recipient of multiple waves of population movements, most recently by Austronesian-speaking groups ultimately from Neolithic mainland Asia and later arrivals during the historic era from India and the Middle East. We have genotyped SNPs in ~500 individuals from 30 populations spanning this entire geographical region, from communities close to mainland Asia through to New Guinea. Particular attention has been paid to genomic data that are informative for population history, including the role of recent arrivals during the historic era and admixture with archaic hominins.
Project description:To study the soil mcirobial functional communities and the nutrient cycles couplings changes after exposure to different contaminant
Project description:The present invention relates to methods for determining soil quality, and especially soil pollution, using the invertebrate soil organism Folsomia candida also designated as springtail. Specifically, the present invention relates to a method for determining soil quality comprising: contacting Folsomia Candida with a soil sample to be analysed during a time period of 1 to 5 days; isolating said soil contacted Folsomia Candida; extracting RNA from said isolated soil contacted Folsomia Candida; determing a gene expression profile based on said extracted RNA using microarray technology; comparing said gene expression profile with a reference gene expression profile; and determing soil quality based expression level differences between said gene expression profile and said control expression profile.
Project description:DNA methylation plays a key role in demarcation of regulatory regions, including promoter-associated CpG islands. While CpG islands are typically maintained in an unmethylated state in normal cells, a proportion of CpG islands are subject to hypermethylation in cancer cells. It still remains elusive how the exquisite demarcation of the bimodal methylation state is established and maintained at the CpG island flanks and conversely what triggers the erosion of CpG island DNA methylation in tumorigenesis. Here, we applied whole-genome bisulphite sequencing to study the comprehensive methylation patterns of prostate normal and cancer tissues. Alongside we performed TET-assisted bisulphite sequencing to study genome-wide DNA hydroxymethylation patterns of normal prostate and prostate cancer tissues.