Project description:To examine differential effect of the mutation of rice OsPIPT6 on the gene exoression in shoot and root tissues, we performed microarray analysis using shoot and root tissues of wild-type and ospipt6-KO mutant.
Project description:To examine differential effect of the mutation of rice OsHHO3 on the gene exoression in shoot and root tissues, we performed microarray analysis using shoot and root tissues of wild-type and oshho3-KO mutant.
Project description:au10-15_cineroots - transdifferentiation - Study of the molecular mechanism during transdifferenciation from root apical meristem to shoot apical meristem - culture in middle with different hormons, permits transdifferenciation from root to shoot tissues.
Project description:To explore the molecular mechanisms of shoot and root development mediated by OsSPT5-1, we established osspt5-1#12 mutant line, and then examined the gene expression profiles in vegetative shoot and root tissues of WT and osspt5-1#12.
Project description:au10-15_cineroots - transdifferentiation - Study of the molecular mechanism during transdifferenciation from root apical meristem to shoot apical meristem - culture in middle with different hormons, permits transdifferenciation from root to shoot tissues. 6 dye-swap - time course
Project description:Leucaena leucocephala seedlings were treated with PEG6000 and the shoot and root tissues were collected after 48 hours following the treatment. The gene expressions were compared between treated and untreated in root and shoot separately. The differentially expressed genes may be related to drought resistance.
Project description:To study genes specially expressed in root tip, leaf tip, shoot tip, root (without root tip) and leaf (without leaf tip) of Ceratopteris richardii, we carried out an RNA-seq to analyze gene expression levels from these five tissues.
Project description:Plants modulate the efficiency of root nitrogen (N) acquisition in response to shoot N demand. However, molecular components directly involved in this shoot-to-root communication remain to be identified. Here, we show that phloem-mobile CEPD-like 2 (CEPDL2) polypeptide is upregulated in the leaf vasculature in response to decreased shoot N status and, after translocation to the roots, promotes high-affinity uptake and root-to-shoot transport of nitrate by activating nitrate transporter genes such as NRT2.1, NRT3.1 and NRT1.5. Loss of CEPDL2 decreases nitrate uptake and root-to-shoot transport activity in roots, leading to a reduction in shoot nitrate content and plant biomass. CEPDL2 contributes to N acquisition cooperatively with CEPD1 and CEPD2 that mediate root N status, and their complete loss severely impairs N homeostasis in plants. Reciprocal grafting analysis provided conclusive evidence that the shoot CEPDL2/CEPD genotype defines the root high-affinity uptake activity of nitrate. Our results indicate that plants integrate shoot N status and root N status in leaves and systemically regulate the efficiency of root N acquisition.
Project description:gnp07_regeneome_transdifferenciation - microdissection - Study of the moleculars mecanism during transdifferenciation of Root ApicalMeristem to Shoot Apical Meristem - middle of growth permits to induce transdifferenciation of root apical meristem to shoot apical meristem