Project description:Central nervous system (CNS) tumors are the leading cause of pediatric cancer death, and these patients have an increased risk for developing secondary neoplasms. Due to the low prevalence of pediatric CNS tumors, major advances in targeted therapies have been lagging compared to other adult tumors. We collected single nuclei RNA-seq data from 35 pediatric CNS tumors and three non-tumoral pediatric brain tissues (84,700 nuclei) and characterized tumor heterogeneity and transcriptomic alterations. We distinguished cell subpopulations associated with specific tumor types including radial glial cells in ependymomas and oligodendrocyte precursor cells in astrocytomas. In tumors, we observed pathways important in neural stem cell-like populations, a cell type previously associated with therapy resistance. Lastly, we identified transcriptomic alterations among pediatric CNS tumor types compared to non-tumor tissues, while accounting for cell type effects on gene expression. Our results suggest potential tumor type and cell type-specific targets for pediatric CNS tumor treatment.
Project description:Central nervous system (CNS) tumors are the leading cause of pediatric cancer death, and these patients have an increased risk for developing secondary neoplasms. Due to the low prevalence of pediatric CNS tumors, major advances in targeted therapies have been lagging compared to other adult tumors. We collected single nuclei RNA-seq data from 35 pediatric CNS tumors and three non-tumoral pediatric brain tissues (84,700 nuclei) and characterized tumor heterogeneity and transcriptomic alterations. We distinguished cell subpopulations associated with specific tumor types including radial glial cells in ependymomas and oligodendrocyte precursor cells in astrocytomas. In tumors, we observed pathways important in neural stem cell-like populations, a cell type previously associated with therapy resistance. Lastly, we identified transcriptomic alterations among pediatric CNS tumor types compared to non-tumor tissues, while accounting for cell type effects on gene expression. Our results suggest potential tumor type and cell type-specific targets for pediatric CNS tumor treatment.
Project description:Tumor type and cell type-specific gene expression alterations in diverse pediatric central nervous system tumors identified using single nuclei RNA-seq
Project description:Tumor type and cell type-specific gene expression alterations in diverse pediatric central nervous system tumors identified using single nuclei RNA-seq
Project description:Molecular characteristics of pediatric brain tumors have not only allowed for tumor subgrouping but have introduced novel treatment options for patients with specific tumor alterations. Therefore, an accurate histologic and molecular diagnosis is critical for optimized management of all pediatric patients with brain tumors, including central nervous system embryonal tumors. We present a case where optical genome mapping identified a ZNF532-NUTM1 fusion in a patient with a unique tumor best characterized histologically as a central nervous system embryonal tumor with rhabdoid features. Additional analyses including immunohistochemistry for NUT protein, methylation array, whole genome, and RNA-sequencing was done to confirm the presence of the fusion in the tumor. This is the first description of a pediatric patient with a ZNF532-NUTM1 fusion, yet the histology of this tumor is similar to that of adult cancers with ZNF-NUTM1 fusions and other NUTM1-fusion positive brain tumors reported in literature. Although rare, the distinct pathology and underlying molecular characteristics of these tumors separate them from other embryonal tumors. Therefore, the NUTM-rearrangement appears to define a novel subgroup of pediatric central nervous system embryonal tumors with rhabdoid/epithelioid features that may have a unique response to treatment. Screening for a NUTM1-rearrangement should be considered for all patients with unclassified central nervous system tumors with rhabdoid features to ensure accurate diagnosis so this can ultimately inform therapeutic management for these patients.
Project description:Molecular characteristics of pediatric brain tumors have not only allowed for tumor subgrouping but have introduced novel treatment options for patients with specific tumor alterations. Therefore, an accurate histologic and molecular diagnosis is critical for optimized management of all pediatric patients with brain tumors, including central nervous system embryonal tumors. We present a case where optical genome mapping identified a ZNF532-NUTM1 fusion in a patient with a unique tumor best characterized histologically as a central nervous system embryonal tumor with rhabdoid features. Additional analyses including immunohistochemistry for NUT protein, methylation array, whole genome, and RNA-sequencing was done to confirm the presence of the fusion in the tumor. This is the first description of a pediatric patient with a ZNF532-NUTM1 fusion, yet the histology of this tumor is similar to that of adult cancers with ZNF-NUTM1 fusions and other NUTM1-fusion positive brain tumors reported in literature. Although rare, the distinct pathology and underlying molecular characteristics of these tumors separate them from other embryonal tumors. Therefore, the NUTM-rearrangement appears to define a novel subgroup of pediatric central nervous system embryonal tumors with rhabdoid/epithelioid features that may have a unique response to treatment. Screening for a NUTM1-rearrangement should be considered for all patients with unclassified central nervous system tumors with rhabdoid features to ensure accurate diagnosis so this can ultimately inform therapeutic management for these patients.
2023-02-28 | GSE226220 | GEO
Project description:Array-based bioinformatic analysis on pediatric primary central nervous system germ cell tumors