Project description:Background: Chromatin remodeling complexes facilitate the access of enzymes that mediate transcription, replication or repair of DNA by modulating nucleosome position and/or composition. Ino80 is the DNA-dependent Snf2-like ATPase subunit of a complex whose nucleosome remodeling activity requires actin-related proteins, Arp4, Arp5 and Arp8, as well as two RuvB-like DNA helicase subunits. Budding yeast mutants deficient for Ino80 function are not only hypersensitive to reagents that induce DNA double strand breaks, but also to those that impair replication fork progression. Results: To understand why ino80 mutants are sensitive to agents that perturb DNA replication, we used chromatin immunoprecipitation to map the binding sites of the Ino80 chromatin remodeling complex on four budding yeast chromosomes. We found that Ino80 and Arp5 binding sites coincide with origins of DNA replication and tRNA genes. In addition, Ino80 was bound at 67% of the promoters of genes that are sensitive to ino80 mutation. When replication forks were arrested near origins in the presence of hydroxyurea (HU), the presence of the Ino80 complex at stalled forks and at unfired origins increased dramatically. Importantly, the resumption of DNA replication after release from a HU block was impaired in the absence of Ino80 activity. Mutant cells accumulated double-strand breaks as they attempted to restart replication. Consistently, ino80-deficient cells, although proficient for checkpoint activation, delay recovery from the checkpoint response. Conclusions: The Ino80 chromatin remodeling complex is enriched at stalled replication forks where it promotes the resumption of replication upon recovery from fork arrest. Keywords: ChIP-chip • The goal of the experiment Genome-wide localization of Ino80 on chromosome in Saccharomyces cerevisiae • Keywords DNA replication, Saccharomyces cerevisiae, Genome tilling array (chromosome III, IV, V, VI) • Experimental factor Distribution of Ino80 in random culture Distribution of Ino80 in G1 phase Distribution of Ino80 in early S phase • Experimental design ChIP analyses: W303 background cells expressing Myc-tagged Ino80 were used for the ChIP using anti-Myc monoclonal antibody (9E11). ChIP-chip analyses: In all cases, hybridization data for ChIP fraction was compared with WCE (whole cell extract) fraction. Saccharomyces cerevisiae affymetrix genome tiling array (SC3456a520015F for chromosome III, IV, V, VI) was used. • Quality control steps taken Confirmation of several loci by quantitative real time PCR.
Project description:Background: Chromatin remodeling complexes facilitate the access of enzymes that mediate transcription, replication or repair of DNA by modulating nucleosome position and/or composition. Ino80 is the DNA-dependent Snf2-like ATPase subunit of a complex whose nucleosome remodeling activity requires actin-related proteins, Arp4, Arp5 and Arp8, as well as two RuvB-like DNA helicase subunits. Budding yeast mutants deficient for Ino80 function are not only hypersensitive to reagents that induce DNA double strand breaks, but also to those that impair replication fork progression. Results: To understand why ino80 mutants are sensitive to agents that perturb DNA replication, we used chromatin immunoprecipitation to map the binding sites of the Ino80 chromatin remodeling complex on four budding yeast chromosomes. We found that Ino80 and Arp5 binding sites coincide with origins of DNA replication and tRNA genes. In addition, Ino80 was bound at 67% of the promoters of genes that are sensitive to ino80 mutation. When replication forks were arrested near origins in the presence of hydroxyurea (HU), the presence of the Ino80 complex at stalled forks and at unfired origins increased dramatically. Importantly, the resumption of DNA replication after release from a HU block was impaired in the absence of Ino80 activity. Mutant cells accumulated double-strand breaks as they attempted to restart replication. Consistently, ino80-deficient cells, although proficient for checkpoint activation, delay recovery from the checkpoint response. Conclusions: The Ino80 chromatin remodeling complex is enriched at stalled replication forks where it promotes the resumption of replication upon recovery from fork arrest. Keywords: ChIP-chip • The goal of the experiment Genome-wide localization of Ino80 and Arp5 on chromosome in Saccharomyces cerevisiae • Keywords DNA replication, Saccharomyces cerevisiae, Genome tilling array (chromosome III, IV, V, VI) • Experimental factor Distribution of Ino80 and Arp5 in wild type in random culture Distribution of Ino80 in G1 cells Distribution of Ino80 in early S phase cells • Experimental design ChIP analyses: W303 background cells expressing Myc tagged Ino80 were used for the ChIP using anti-Myc monoclonal antibody (9E11). ChIP analyses: W303 background cells expressing Myc tagged Ino80 were used for the ChIP using anti-Arp5 polyclonal antibody. ChIP-chip analyses: In all cases, hybridization data for ChIP fraction was compared with WCE (whole cell extract) fraction. Saccharomyces cerevisiae affymetrix genome tiling array (SC3456a520015F for chromosome III, IV, V, VI) was used. • Quality control steps taken Confirmation of several loci by quantitative real time PCR.
Project description:Aneuploidy and aging are correlated; however, a causal link between these two phenomena has remained elusive. Here we show that yeast disomic for a single native yeast chromosome generally have a decreased replicative lifespan. In addition, the extent of this lifespan deficit correlates with the size of the extra chromosome. We identified a mutation in BUL1 that rescues both the lifespan deficit and a protein trafficking defect in yeast disomic for chromosome 5. Bul1 is an E4 ubiquitin ligase adaptor involved in a protein quality-control pathway that targets membrane proteins for endocytosis and destruction in the lysosomal vacuole thereby maintaining protein homeostasis. Concurrent suppression of the aging and trafficking phenotypes suggests that disrupted membrane protein homeostasis in aneuploid yeast may contribute to their accelerated aging. The data reported here demonstrate that aneuploidy can impair protein homeostasis, shorten lifespan, and may contribute to age-associated phenotypes.