Project description:The cellular response to treatment with DNA-damaging substances at low concentrations which are genotoxic but do not have a strong cytotoxic effect are of special interest. In addition, environmental variations that influence growth conditions, e.g. different media, and individual fitness, e.g. different strains, are likely to influence and modulate the adverse effects of individual DNA damaging substances. At sub-cytotoxic levels, DNA damaging substances play an important role in the accumulation of genomic mutations. In longer living organisms, like humans and other mammals, exposure to DNA damaging substances over extended period of time is a critical factor that contributes to the development of various diseases and in particular of tumors. The aim of our work was to study how strain background and growth conditions influence respond to DNA damage caused by low doses of MMS and which part of these changes is responsible for their sensitivity to toxic conditions. We analyzed sensitivity of two yeast strains FF18984 and BY4742 to MMS in media with limited and full nutrient availability. Keywords: Yeast, S.cerevisiae, MMS, stress response, DNA damage
Project description:The N-terminal tail of histone H2A shows evolutionary changes that parallel genome size and aid chromatin compaction. As genome size increases, so does the number of arginines. In contrast, serines corellate with small genomes. Examples for such changes are arginine in position 11 and serine in position 15. To test if these residues affect mRNA levels, we analysed gene expression profiles of S.cerevisiae strains containing either WT or mutant H2A.
Project description:Wt S. cerevisiae cells from a W303 background were exposed to multiple doses of MMS and Gamma Radiation and their global transcriptional response was measured Keywords: dose response