Project description:Baseline replicates at start of time-course. Flies in these samples were killed just prior to the start of both yeast (Y) and no yeast (NY) treatments (see below), i.e. at hour 0. The four samples were temporally ordered as described for change-point analysis. Larvae were reared on standard diet until early third instar, at which time they were washed and transferred to standard diet lacking yeast. The animals remained on this diet until four days after emergence, when one group of adults was switched back to standard diet containing yeast (group Y) while another remained on the diet lacking yeast (group NY). Flies from both groups were killed every hour for the next twelve hours, creating 24 samples across the two treatments. In addition, four samples of flies were killed just before the start of the time course and used as baseline replicates for the no yeast (NY) and yeast (Y) treatments. Baseline replicates were temporally ordered as noted for change-point analysis. No yeast (NY) treatment samples at hours four and eight did not yield microarray data due to insufficient RNA. Total RNA was extracted from whole animals using Trizol (Invitrogen). Sample processing and microarray hybridization/scanning were performed at the Brown University Center for Genetics and Genomics according to Affymetrix protocol. Microarray data was normalized by DNA-Chip Analyzer (dChip, http://www.dchip.org), which utilizes an invariant difference selection (IDS) algorithm to construct a normalization relation. Keywords = insulin, diet, nutrition Keywords: ordered
Project description:Larvae were reared on standard diet until early third instar, at which time they were washed and transferred to standard diet lacking yeast. The animals remained on this diet until four days after emergence, when one group of adults was switched back to standard diet containing yeast (group Y) while another remained on the diet lacking yeast (group NY). Flies from both groups were killed every hour for the next twelve hours, creating 24 samples across the two treatments. In addition, four samples of flies were killed just before the start of the time course and used as baseline replicates for the no yeast (NY) and yeast (Y) treatments. Baseline replicates were temporally ordered as noted for change-point analysis. No yeast (NY) treatment samples at hours four and eight did not yield microarray data due to insufficient RNA.
Project description:Hourly time course samples for the no yeast (NY) treatment group. Note that the samples at hours 4 and 8 do not have microarray data due to insufficient RNA yield. Larvae were reared on standard diet until early third instar, at which time they were washed and transferred to standard diet lacking yeast. The animals remained on this diet until four days after emergence, when one group of adults was switched back to standard diet containing yeast (group Y) while another remained on the diet lacking yeast (group NY). Flies from both groups were killed every hour for the next twelve hours, creating 24 samples across the two treatments. In addition, four samples of flies were killed just before the start of the time course and used as baseline replicates for the no yeast (NY) and yeast (Y) treatments. Baseline replicates were temporally ordered as noted for change-point analysis. No yeast (NY) treatment samples at hours four and eight did not yield microarray data due to insufficient RNA. Total RNA was extracted from whole animals using Trizol (Invitrogen). Sample processing and microarray hybridization/scanning were performed at the Brown University Center for Genetics and Genomics according to Affymetrix protocol. Microarray data was normalized by DNA-Chip Analyzer (dChip, http://www.dchip.org), which utilizes an invariant difference selection (IDS) algorithm to construct a normalization relation. Keywords = insulin, diet, nutrition Keywords: time-course
Project description:Hourly time course samples for the yeast (Y) treatment group. Larvae were reared on standard diet until early third instar, at which time they were washed and transferred to standard diet lacking yeast. The animals remained on this diet until four days after emergence, when one group of adults was switched back to standard diet containing yeast (group Y) while another remained on the diet lacking yeast (group NY). Flies from both groups were killed every hour for the next twelve hours, creating 24 samples across the two treatments. In addition, four samples of flies were killed just before the start of the time course and used as baseline replicates for the no yeast (NY) and yeast (Y) treatments. Baseline replicates were temporally ordered as noted for change-point analysis. No yeast (NY) treatment samples at hours four and eight did not yield microarray data due to insufficient RNA. Total RNA was extracted from whole animals using Trizol (Invitrogen). Sample processing and microarray hybridization/scanning were performed at the Brown University Center for Genetics and Genomics according to Affymetrix protocol. Microarray data was normalized by DNA-Chip Analyzer (dChip, http://www.dchip.org), which utilizes an invariant difference selection (IDS) algorithm to construct a normalization relation. Keywords = insulin, diet, nutrition Keywords: time-course
Project description:In this study we use a combination of proteomics Label-Free quantification methods to monitor protein expression changes over a time course of more than 20 hours of embryo development in Drosophila melanogaster.
Project description:Metabolites of cold hardy versus cold susceptible flies were compared using N less than R-based metabolomics. We used 8 replicates per line (2 hardy lines, two susceptible lines), and sampled each line at three time points (before, during and after cold), giving rise to 96 samples total.
Project description:Genome wide profiling of Su(H) [CSL] binding in Drosophila melanogaster larval CNSs where Notch is hyperactive in neuroblasts for 24 hours