Project description:To better understand host/phage interactions and the genetic bases of phage resistance in a model system relevant to potential phage therapy, we isolated several spontaneous mutants of the USA300 S. aureus clinical isolate NRS384 that were resistant to phage K. Six of these had a single missense mutation in the host rpoC gene, which encodes the RNA polymerase beta prime subunit. To examine the hypothesis that the mutations in the host RNA polymerase affect the transcription of phage genes, we performed RNA-seq analysis on total RNA samples collected from NRS384 wild-type (WT) and rpoC G17D mutant cultures infected with phage K, at different time points after infection. Infection of the WT host led to a steady increase of phage transcription relative to the host. Our analysis allowed us to define different early, middle, and late phage genes based on their temporal expression patterns and group them into transcriptional units. Predicted promoter sequences defined by conserved -35, -10, and in some cases extended -10 elements were found upstream of early and middle genes. However, sequences upstream of late genes did not contain clear, complete, canonical promoter sequences, suggesting that factors in addition to host RNA polymerase are required for their regulated expression. Infection of the rpoC G17D mutant host led to a transcriptional pattern that was similar to the WT at early time points. However, beginning at 20 minutes after infection, transcription of late genes (such as phage structural genes and host lysis genes) was severely reduced. Our data indicate that the rpoCG17D mutation prevents the expression of phage late genes, resulting in a failed infection cycle for phage K. In addition to illuminating the global transcriptional landscape of phage K throughout the infection cycle, these studies can inform our investigations into the bases of phage K’s control of its transcriptional program as well as mechanisms of phage resistance.
Project description:We analyzed RNA-Seq data of two Staphylococcus aureus strains, Newman and SH1000, infected by Kayvirus phage K. Staphylococcus virus K is used in the phage therapy, its genome is 148 kb long consisting of dsDNA with long terminal repeats, and encodes 233 ORFs and 4 tRNAs. The sampling times 0, 2, 5, 10, 20, and 30 minutes after infection were chosen based on the growth characteristics of the phage K at the two S. aureus strains. From the RNA-Seq data we determined transcriptional profile of the phage K and its hosts, which allowed us to identify differentially expressed genes, ncRNAs, and promotor and terminator sites. Transcription of the phage K genes starts immediately after the infection of bacterial cells and we found a gradual take-over by phage K transcripts in the infected cells. The temporal transcriptional profile of phage K was similar in both strains and the relative expression of phage K genes shows three distinct transcript types – early, middle, and late based on the time they reach maximum expression. The bacterial response to phage K infection is similar to the general stress response. It includes the upregulation of nucleotide, amino acid and energy synthesis and transporter genes and the downregulation of transcription factors. The expression of particular virulence genes involved in adhesion and immune system evasion as well as prophage integrases were marginally affected. This work unveils the versatile nature of phage K infection leading to its broad host range
Project description:The aim of the study was to investigate the resistance mechanism of Staphylococcus aureus towards lytic phages of the genus Kayvirus and the role of the membrane-anchored protein (primary accession Q2FYE0) designated PdpSau encoded by Staphylococcus aureus prophages. PdpSau does not prevent the infecting kayvirus from adsorbing onto the host cell and delivering its genome into the cell, but phage DNA replication is halted. Changes in the cell membrane polarity and permeability were observed 10 min after the infection leading to prophage-activated cell death. The LC-MS/MS analysis, as one of the methods, was used for protein detection and to find out whether this protein is predominantly presented in membranes. These findings are relevant for the advancement of phage therapy.
Project description:Pseudomonas syringae pv. phaseolicola (Pph) is a significant bacterial pathogen of agricultural crops, and phage Φ6 and other members of the dsRNA virus family Cystoviridae undergo lytic (virulent) infection of Pph, using the type IV pilus as the initial site of cellular attachment. Despite the popularity of Pph/phage Φ6 as a model system in evolutionary biology, Pph resistance to phage Φ6 remains poorly characterized. To investigate differences between phage Φ6 resistant Pseudomonas syringae pathovar phaseolicola strains, we performed expression analysis of super and non piliated strains of Pseudomonas syringae to determine the genetic cause of resistance to viral infection.
Project description:Staphylococcus aureus is a Gram-positive human pathogen causing a variety of human diseases in both hospital and community settings. This bacterium is so closely associated with prophages that it is rare to find S. aureus isolates without prophages. Two phages are known to be important for staphylococcal virulence: the beta-hemolysin (hlb) converting phage and the Panton-Valentine Leukocidin (PVL) converting phage. The hlb-converting phage is found in more than 90% of clinical isolates of S. aureus. This phage produces exotoxins and immune modulatory molecules, which inhibit human innate immune responses. The PVL-converting phage produces the two-component exotoxin PVL, which can kill human leucocytes. This phage is wide-spread among community-associated methicillin resistant S. aureus (CA-MRSA). It also shows strong association with soft tissue infections and necrotizing pneumonia. Several lines of evidence suggest that staphylococcal prophages increase bacterial virulence not only by providing virulence factors but also by altering bacterial gene expression: 1) Transposon insertion into prophage regulatory genes, but not into the genes of virulence factors, reduced S. aureus killing of Caenorhabditis elegans.; 2) Although the toxins and immune modulatory molecules encoded by the hlb- converting phages do not function in the murine system, deletion of ϕNM3, the hlb-converting phage in S. aureus Newman, reduced staphylococcal virulence in the murine abscess formation model. 3) In a preliminary microarray experiment, prophages in S. aureus Newman altered the expression of more than 300 genes. In this research proposal, using microarray and high-throughput quantitative RT-PCR (qRT-PCR) technologies, we will identify the effects of the two important staphylococcal phages on the gene expression of S. aureus in both in vitro and in vivo conditions. This project is intended to be completed within one year. All the data – microarray, qRT-PCR and all the primer sequences- will be made available to public 6 month after completion. Data from this project will help us to understand the role of prophages in the S. aureus pathogenesis and can lead to development of a strategy to interfere with the pathogenesis process. Following strains were grown in TSA broth: Staphylococcus aureus USA300 (reference) Staphylococcus aureus USA300 with deletion of ϕSa2usa (Query) Staphylococcus aureus USA300 with deletion of ϕSa3usa (Query) Staphylococcus aureus USA300 Prophage-free mutant (Query) Staphylococcus aureus USA300 Prophage-free mutant lysogenized with ϕSa2mw (Query) Staphylococcus aureus USA300 Prophage-free mutant lysogenized with ϕSa3usa (Query) strain: Staphylococcus aureus USA300 Prophage-free mutant lysogenized with both ϕSa2mw and ϕSa3usa (Query) RNA samples were harvested at early log, midlog and stationary phase.Samples were hybridized on aminosilane coated slides with 70-mer oligos.
Project description:Staphylococcus aureus is a Gram-positive human pathogen causing a variety of human diseases in both hospital and community settings. This bacterium is so closely associated with prophages that it is rare to find S. aureus isolates without prophages. Two phages are known to be important for staphylococcal virulence: the beta-hemolysin (hlb) converting phage and the Panton-Valentine Leukocidin (PVL) converting phage. The hlb-converting phage is found in more than 90% of clinical isolates of S. aureus. This phage produces exotoxins and immune modulatory molecules, which inhibit human innate immune responses. The PVL-converting phage produces the two-component exotoxin PVL, which can kill human leucocytes. This phage is wide-spread among community-associated methicillin resistant S. aureus (CA-MRSA). It also shows strong association with soft tissue infections and necrotizing pneumonia. Several lines of evidence suggest that staphylococcal prophages increase bacterial virulence not only by providing virulence factors but also by altering bacterial gene expression: 1) Transposon insertion into prophage regulatory genes, but not into the genes of virulence factors, reduced S. aureus killing of Caenorhabditis elegans.; 2) Although the toxins and immune modulatory molecules encoded by the hlb- converting phages do not function in the murine system, deletion of NM3, the hlb-converting phage in S. aureus Newman, reduced staphylococcal virulence in the murine abscess formation model. 3) In a preliminary microarray experiment, prophages in S. aureus Newman altered the expression of more than 300 genes. In this research proposal, using microarray and high-throughput quantitative RT-PCR (qRT-PCR) technologies, we will identify the effects of the two important staphylococcal phages on the gene expression of S. aureus in both in vitro and in vivo conditions. This project is intended to be completed within one year. All the data – microarray, qRT-PCR and all the primer sequences- will be made available to public 6 month after completion. Data from this project will help us to understand the role of prophages in the S. aureus pathogenesis and can lead to development of a strategy to interfere with the pathogenesis process. Staphylococcus aureus subsp.aureus strain Newman (reference) and Staphylococcus aureus subsp.aureus strain Newman yhcR knockout(query) were grown in TSA broth.Samples were grown under aerobic and anaerobic conditions and RNA samples harvested at mid log, stationary, and log phases.Samples were hybridized on aminosilane coated slides with 70-mer oligos.
Project description:Intrinsic and acquired defenses against bacteriophages, including Restriction/Modification, CRISPR/Cas, and Toxin/Anti-toxin systems have been intensely studied, with profound scientific impacts. However, adaptive defenses against phage infection analogous to adaptive resistance to antimicrobials have yet to be described. To identify such mechanisms, we applied an RNAseq-based, comparative transcriptomics approach in different \textit{Pseudomonas aeruginosa} strains after independent infection by a set of divergent virulent bacteriophages. A common host-mediated adaptive stress response to phages was identified that includes the Pseudomonas Quinolone Signal, through which infected cells inform their neighbors of infection, and what may be a resistance mechanism that functions by reducing infection vigor. With host transcriptional machinery left intact, we also observe phage-mediated differential expression caused by phage-specific stresses and molecular mechanisms. These responses suggest the presence of a conserved Bacterial Adaptive Phage Response mechanism as a novel type of host defense mechanism, and which may explain transient forms of phage persistence.
Project description:Staphylococcus aureus is a gram-positive cocci and an important human commensal bacteria and pathogen. S. aureus infections are increasingly difficult to treat because of the emergence of highly resistant MRSA (Methicillin-resistant S. aureus) strains. Here we present a method to study differential gene expression in S. aureus using high-throughput RNA-sequencing (RNA-seq). We use RNA-seq to examine the differential gene expression in S. aureus RN4220 cells containing an exogenously expressed transcription factor and between two S. aureus strains (RN4220 and NCTC8325-4). The information provided by RNA-seq was a significant advance over previously described microarray based techniques. We investigated the sequence and gene expression differences between RN4220 and NCTC8325-4 and used the RNA-seq data to identify S. aureus promoters suitable for in vitro analysis. We used RNA-seq to describe, on a genome wide scale, genes positively and negatively regulated by a phage encoded transcription factor, gp67. RNA-seq offers the ability to study differential gene expression with single-nucleotide resolution, and is a considerable improvement over the predominant genome-wide transcriptome technologies used in S. aureus. RNA-seq analysis of Staphylococcus aureus RN4220 (electrocompetent strain) carrying either empty pRMC2 (inducible expression vector) or pRMC2 carrying the ORF67 gene (encodes gp67). Both strains were grown to OD 0.2 and transgene expression was induced with 100ng/ml anhydrotetracycline. As a control, Staphylococcus aureus strain NCTC8325-4 (non-electrocompetent strain) was grown under identical conditions except without the addition of anhydrotetracycline.
Project description:Staphylococcus aureus is a Gram-positive human pathogen causing a variety of human diseases in both hospital and community settings. This bacterium is so closely associated with prophages that it is rare to find S. aureus isolates without prophages. Two phages are known to be important for staphylococcal virulence: the beta-hemolysin (hlb) converting phage and the Panton-Valentine Leukocidin (PVL) converting phage. The hlb-converting phage is found in more than 90% of clinical isolates of S. aureus. This phage produces exotoxins and immune modulatory molecules, which inhibit human innate immune responses. The PVL-converting phage produces the two-component exotoxin PVL, which can kill human leucocytes. This phage is wide-spread among community-associated methicillin resistant S. aureus (CA-MRSA). It also shows strong association with soft tissue infections and necrotizing pneumonia. Several lines of evidence suggest that staphylococcal prophages increase bacterial virulence not only by providing virulence factors but also by altering bacterial gene expression: 1) Transposon insertion into prophage regulatory genes, but not into the genes of virulence factors, reduced S. aureus killing of Caenorhabditis elegans.; 2) Although the toxins and immune modulatory molecules encoded by the hlb- converting phages do not function in the murine system, deletion of ϕNM3, the hlb-converting phage in S. aureus Newman, reduced staphylococcal virulence in the murine abscess formation model. 3) In a preliminary microarray experiment, prophages in S. aureus Newman altered the expression of more than 300 genes. In this research proposal, using microarray and high-throughput quantitative RT-PCR (qRT-PCR) technologies, we will identify the effects of the two important staphylococcal phages on the gene expression of S. aureus in both in vitro and in vivo conditions. This project is intended to be completed within one year. All the data – microarray, qRT-PCR and all the primer sequences- will be made available to public 6 month after completion. Data from this project will help us to understand the role of prophages in the S. aureus pathogenesis and can lead to development of a strategy to interfere with the pathogenesis process.
Project description:Staphylococcus aureus is a Gram-positive human pathogen causing a variety of human diseases in both hospital and community settings. This bacterium is so closely associated with prophages that it is rare to find S. aureus isolates without prophages. Two phages are known to be important for staphylococcal virulence: the beta-hemolysin (hlb) converting phage and the Panton-Valentine Leukocidin (PVL) converting phage. The hlb-converting phage is found in more than 90% of clinical isolates of S. aureus. This phage produces exotoxins and immune modulatory molecules, which inhibit human innate immune responses. The PVL-converting phage produces the two-component exotoxin PVL, which can kill human leucocytes. This phage is wide-spread among community-associated methicillin resistant S. aureus (CA-MRSA). It also shows strong association with soft tissue infections and necrotizing pneumonia. Several lines of evidence suggest that staphylococcal prophages increase bacterial virulence not only by providing virulence factors but also by altering bacterial gene expression: 1) Transposon insertion into prophage regulatory genes, but not into the genes of virulence factors, reduced S. aureus killing of Caenorhabditis elegans.; 2) Although the toxins and immune modulatory molecules encoded by the hlb- converting phages do not function in the murine system, deletion of phiNM3, the hlb-converting phage in S. aureus Newman, reduced staphylococcal virulence in the murine abscess formation model. 3) In a preliminary microarray experiment, prophages in S. aureus Newman altered the expression of more than 300 genes. In this research proposal, using microarray and high-throughput quantitative RT-PCR (qRT-PCR) technologies, we will identify the effects of the two important staphylococcal phages on the gene expression of S. aureus in both in vitro and in vivo conditions. This project is intended to be completed within one year. All the data – microarray, qRT-PCR and all the primer sequences- will be made available to public 6 month after completion. Data from this project will help us to understand the role of prophages in the S. aureus pathogenesis and can lead to development of a strategy to interfere with the pathogenesis process.