Project description:In this study, we used the murine (Mus musculus) medullary thymic epithelial cell line (mTEC 3.10 cell line) co-cultured with fresh thymocytes as a functional assay for mTEC-thymocyte adhesion. Then we analyzed the differential transcriptional profile of this cell line, by means of Agilent oligo microarray hybridization, comparing Autoimmune regulator (Aire) wild-type cells vs Crispr-Cas9-induced Aire KO cells. The comparative transcriptional expression signatures allowed us to find those differentially expressed mRNAs or lncRNAs between the samples tested.
Project description:In this study, we transfected murine (Mus musculus) medullary thymic epithelial cell line (mTEC 3.10 cell line) with miR155 mimic to assess a possible post-transcriptional control of the miRNA over the Aire gene. Then we analyzed the differential transcriptional profile of this cell line, by means of Agilent oligo microarray hybridization, comparing Autoimmune regulator (Aire) wild-type cells vs cells transfected with miR155 mimic. The comparative transcriptional expression signatures allowed us to find those differentially expressed mRNAs between the samples tested.
Project description:We compared gene expression profiles of lymphotoxin alpha- and lymphtoxin beta receptor-deficient thymic medullary epithelial cells with their wild-type littermates, as well as with Aire-deficient and wild-type littermates. This was done in order to determine whether there was overlap in the effects of lymphotoxin and aire. Keywords: genetic modification
Project description:We compared gene expression profiles of lymphotoxin alpha- and lymphtoxin beta receptor-deficient thymic medullary epithelial cells with their wild-type littermates, as well as with Aire-deficient and wild-type littermates. This was done in order to determine whether there was overlap in the effects of lymphotoxin and aire. Experiment Overall Design: Individual thymi were digested with collagenase, dispase and DNAse, and meduallary epithelial cells with the phenotype CD45-G8.8+Ly51intMHCclasssIIhi were isolated by FACS.
Project description:Aire is a transcriptional regulator that induces promiscuous expression of thousands of tissue-restricted antigen (TRA) genes in medullary thymic epithelial cells (mTECs). While the target genes of Aire are well characterized, the transcriptional programs regulating its own expression remain elusive. We used Affymetrix microarrays to analyze the gene expression patterns of Aire expressing cells (mature mTECs and Thymic B cells) and compared them to control counterparts, namely immature mTECs, cortical Thymic epithelial cells and splenic B cells of tissue-restricted antigen (TRA) genes in medullary thymic epithelial cells (mTECs). While the target genes of Aire are well characterized, the transcriptional programs regulating its own expression remain elusive. We’ve used Assay for transposase-accessible chromatin using sequencing (ATAC-Seq) on the different thymic epithelial cell populations to assess chromatin accessibility around the Aire locus in these cells. Moreover, we’ve used the indexing-first chromatin immunoprecipitation (iChIP) technique to assess the occupancy of the Irf8 transcription factor in the Aire locus
Project description:Aire is a transcriptional regulator that induces promiscuous expression of thousands of tissue-restricted antigen (TRA) genes in medullary thymic epithelial cells (mTECs). While the target genes of Aire are well characterized, the transcriptional programs regulating its own expression remain elusive. We used Affymetrix microarrays to analyze the gene expression patterns of Aire expressing cells (mature mTECs and Thymic B cells) and compared them to control counterparts, namely immature mTECs, cortical Thymic epithelial cells and splenic B cells of tissue-restricted antigen (TRA) genes in medullary thymic epithelial cells (mTECs). While the target genes of Aire are well characterized, the transcriptional programs regulating its own expression remain elusive. We’ve used Assay for transposase-accessible chromatin using sequencing (ATAC-Seq) on the different thymic epithelial cell populations to assess chromatin accessibility around the Aire locus in these cells. Moreover, we’ve used the indexing-first chromatin immunoprecipitation (iChIP) technique to assess the occupancy of the Irf8 transcription factor in the Aire locus
Project description:Aire in medullary thymic epithelial cells plays an essential role in the negative selection through expression of broad arrays of tissue-restricted antigens. We asked whether Aire could also activate the expression of tissue-restricted antigens in cortical thymic epithelial cells. We established a semi-knockin strain of NOD-background mice expressing Aire under control of the promoter of β5t, a thymoproteasome expressed exclusively in the cortex. We extracted RNA from cortical thymic epithelial cells ectopically expressing Aire and hybridization was performed on Affymetrix. microarrays.