Project description:We applied small RNA sequencing technology to identify precursor tRNA derived small RNA expression in human cancer cell lines and human liver tissues.
Project description:Single cell-based studies have revealed tremendous cellular heterogeneity in stem cell and progenitor compartments, suggesting continuous differentiation trajectories with intermixing of cells at various states of lineage commitment and notable degree of plasticity during organogenesis. The hepato-pancreato-biliary organ system relies on a small endoderm progenitor compartment that gives rise to a variety of different adult tissues, including liver, pancreas, gallbladder, and extra-hepatic bile ducts. Experimental manipulation of various developmental signals in the mouse embryo underscored important cellular plasticity in this embryonic territory. This is also reflected in the existence of human genetic syndromes as well as congenital or environmentally-caused human malformations featuring multiorgan phenotypes in liver, pancreas and gallbladder. Nevertheless, the precise lineage hierarchy and succession of events leading to the segregation of an endoderm progenitor compartment into hepatic, biliary, and pancreatic structures are not yet established. Here, we combine computational modelling approaches with genetic lineage tracing to assess the tissue dynamics accompanying the ontogeny of the hepato-pancreato-biliary organ system. We show that a multipotent progenitor domain persists at the border between liver and pancreas, even after pancreatic fate is specified, contributing to the formation of several organ derivatives, including the liver. Moreover, using single-cell RNA sequencing we define a specialized niche that possibly supports such extended cell fate plasticity.
Project description:Intervention type:DRUG. Intervention1:Huaier, Dose form:GRANULES, Route of administration:ORAL, intended dose regimen:20 to 60/day by either bulk or split for 3 months to extended term if necessary. Control intervention1:None.
Primary outcome(s): For mRNA libraries, focus on mRNA studies. Data analysis includes sequencing data processing and basic sequencing data quality control, prediction of new transcripts, differential expression analysis of genes. Gene Ontology (GO) and the KEGG pathway database are used for annotation and enrichment analysis of up-regulated genes and down-regulated genes.
For small RNA libraries, data analysis includes sequencing data process and sequencing data process QC, small RNA distribution across the genome, rRNA, tRNA, alignment with snRNA and snoRNA, construction of known miRNA expression pattern, prediction New miRNA and Study of their secondary structure Based on the expression pattern of miRNA, we perform not only GO / KEGG annotation and enrichment, but also different expression analysis.. Timepoint:RNA sequencing of 240 blood samples of 80 cases and its analysis, scheduled from June 30, 2022..
Project description:Small RNA sequencing data (TruSeq small RNA library preparation kit v2) from serum samples and tumor tissue of orthotopically injected mice (SH-SY5Y cell line) and unengrafted mice, treated with idasanutlin, temsirolimus and vehicle control.
Project description:Small RNA profiles in the liver of 9-week old wild type and diabetic db/db mice were measured to detect the differentially expressed small RNAs. Small RNA profiles of 9-week old wild type (WT) and diabetic db/db mice were generated by deep sequencing using Illumina Genome Analyzer.
Project description:Two-month-old C57BL/6J male mice were placed on chow diet or a diet enriched in high fat, cholesterol, and fructose (Research diet D09100301: 40 kcal% fat, 2% cholesterol, 20 kcal% fructose, HFCF diet) for 1 or 3 months. Liver RNA was isolated and submitted for small RNA sequencing.
Project description:Small RNAs were deep sequenced from the liver and spleen of adult mice in an effort to identify somatic piRNAs. Following sequencing of all small RNAs, known non-coding RNAs were computationally removed from the dataset. The remaining RNAs were then mapped to the genome and analyzed for sequence characteristics (5' base, length) typical of known piRNAs. To determine if any of the identified small RNAs were MIWI2 dependent, we deep sequenced small RNAs from liver and spleen of MIWI2 KO mice and analyzed them as above.
Project description:Small RNA profiles in the liver of 9-week old wild type and diabetic db/db mice were measured to detect the differentially expressed small RNAs.